text2image_1 / app.py
RanM's picture
Update app.py
cbd1935 verified
raw
history blame
3.44 kB
import gradio as gr
from diffusers import AutoPipelineForText2Image
from diffusers.schedulers import DPMSolverMultistepScheduler
from generate_propmts import generate_prompt # Assuming you have this module
from PIL import Image
import asyncio
import threading
import traceback
# Define the SchedulerWrapper class
class SchedulerWrapper:
def __init__(self, scheduler):
self.scheduler = scheduler
self._step = threading.local()
self._step.step = 0
def __getattr__(self, name):
return getattr(self.scheduler, name)
def step(self, *args, **kwargs):
try:
self._step.step += 1
return self.scheduler.step(*args, **kwargs)
except IndexError:
self._step.step = 0
return self.scheduler.step(*args, **kwargs)
@property
def timesteps(self):
return self.scheduler.timesteps
def set_timesteps(self, *args, **kwargs):
return self.scheduler.set_timesteps(*args, **kwargs)
# Load the model and wrap the scheduler
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
scheduler = DPMSolverMultistepScheduler.from_config(model.scheduler.config)
wrapped_scheduler = SchedulerWrapper(scheduler)
model.scheduler = wrapped_scheduler
# Define the image generation function
async def generate_image(prompt):
try:
num_inference_steps = 5 # Adjust this value as needed
# Use the model to generate an image
output = await asyncio.to_thread(
model,
prompt=prompt,
num_inference_steps=num_inference_steps,
guidance_scale=0.0, # Typical value for guidance scale in image generation
output_type="pil" # Directly get PIL Image objects
)
# Check for output validity and return
if output.images:
return output.images[0]
else:
raise Exception("No images returned by the model.")
except Exception as e:
print(f"Error generating image: {e}")
traceback.print_exc()
return None # Return None on error to handle it gracefully in the UI
# Define the inference function
async def inference(sentence_mapping, character_dict, selected_style):
images = []
print(f'sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}')
prompts = []
# Generate prompts for each paragraph
for paragraph_number, sentences in sentence_mapping.items():
combined_sentence = " ".join(sentences)
prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
prompts.append(prompt)
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
# Use asyncio.gather to run generate_image in parallel
tasks = [generate_image(prompt) for prompt in prompts]
images = await asyncio.gather(*tasks)
# Filter out None values
images = [image for image in images if image is not None]
return images
# Define the Gradio interface
gradio_interface = gr.Interface(
fn=inference,
inputs=[
gr.JSON(label="Sentence Mapping"),
gr.JSON(label="Character Dict"),
gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")
],
outputs=gr.Gallery(label="Generated Images")
)
# Run the Gradio app
if __name__ == "__main__":
gradio_interface.launch()