import gradio as gr from diffusers import AutoPipelineForText2Image from diffusers.schedulers import DPMSolverMultistepScheduler from generate_propmts import generate_prompt # Assuming you have this module from PIL import Image import asyncio import threading import traceback # Define the SchedulerWrapper class class SchedulerWrapper: def __init__(self, scheduler): self.scheduler = scheduler self._step = threading.local() self._step.step = 0 def __getattr__(self, name): return getattr(self.scheduler, name) def step(self, *args, **kwargs): try: self._step.step += 1 return self.scheduler.step(*args, **kwargs) except IndexError: self._step.step = 0 return self.scheduler.step(*args, **kwargs) @property def timesteps(self): return self.scheduler.timesteps def set_timesteps(self, *args, **kwargs): return self.scheduler.set_timesteps(*args, **kwargs) # Load the model and wrap the scheduler model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo") scheduler = DPMSolverMultistepScheduler.from_config(model.scheduler.config) wrapped_scheduler = SchedulerWrapper(scheduler) model.scheduler = wrapped_scheduler # Define the image generation function async def generate_image(prompt): try: num_inference_steps = 5 # Adjust this value as needed # Use the model to generate an image output = await asyncio.to_thread( model, prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=0.0, # Typical value for guidance scale in image generation output_type="pil" # Directly get PIL Image objects ) # Check for output validity and return if output.images: return output.images[0] else: raise Exception("No images returned by the model.") except Exception as e: print(f"Error generating image: {e}") traceback.print_exc() return None # Return None on error to handle it gracefully in the UI # Define the inference function async def inference(sentence_mapping, character_dict, selected_style): images = [] print(f'sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}') prompts = [] # Generate prompts for each paragraph for paragraph_number, sentences in sentence_mapping.items(): combined_sentence = " ".join(sentences) prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style) prompts.append(prompt) print(f"Generated prompt for paragraph {paragraph_number}: {prompt}") # Use asyncio.gather to run generate_image in parallel tasks = [generate_image(prompt) for prompt in prompts] images = await asyncio.gather(*tasks) # Filter out None values images = [image for image in images if image is not None] return images # Define the Gradio interface gradio_interface = gr.Interface( fn=inference, inputs=[ gr.JSON(label="Sentence Mapping"), gr.JSON(label="Character Dict"), gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style") ], outputs=gr.Gallery(label="Generated Images") ) # Run the Gradio app if __name__ == "__main__": gradio_interface.launch()