Spaces:
Runtime error
Runtime error
from generate_prompts import generate_prompt | |
import gradio as gr | |
from diffusers import AutoPipelineForText2Image | |
from io import BytesIO | |
import asyncio | |
# Load the model once outside of the function | |
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo") | |
async def generate_image(prompt, prompt_name): | |
try: | |
print(f"Generating image for {prompt_name}") | |
output = await asyncio.to_thread(model, prompt=prompt, num_inference_steps=1, guidance_scale=0.0) | |
# Check if the model returned images | |
if isinstance(output.images, list) and len(output.images) > 0: | |
image = output.images[0] | |
buffered = BytesIO() | |
try: | |
image.save(buffered, format="JPEG") | |
image_bytes = buffered.getvalue() | |
print(f"Image bytes length for {prompt_name}: {len(image_bytes)}") | |
return image_bytes | |
except Exception as e: | |
print(f"Error saving image for {prompt_name}: {e}") | |
return None | |
else: | |
raise Exception(f"No images returned by the model for {prompt_name}.") | |
except Exception as e: | |
print(f"Error generating image for {prompt_name}: {e}") | |
return None | |
async def process_prompt(sentence_mapping, character_dict, selected_style): | |
images = {} | |
print(f'sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}') | |
prompts = [] | |
# Generate prompts for each paragraph | |
for paragraph_number, sentences in sentence_mapping.items(): | |
combined_sentence = " ".join(sentences) | |
prompt = generate_prompt(combined_sentence, character_dict, selected_style) | |
prompts.append((paragraph_number, prompt)) | |
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}") | |
# Create tasks for all prompts and run them concurrently | |
tasks = [generate_image(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts] | |
results = await asyncio.gather(*tasks) | |
# Map results back to paragraphs | |
for i, (paragraph_number, _) in enumerate(prompts): | |
if i < len(results): | |
images[paragraph_number] = results[i] | |
else: | |
print(f"Error: No result for paragraph {paragraph_number}") | |
return images | |
# Helper function to generate a prompt based on the input | |
def generate_prompt(combined_sentence, character_dict, selected_style): | |
characters = " ".join([" ".join(character) if isinstance(character, list) else character for character in character_dict.values()]) | |
return f"Make an illustration in {selected_style} style from: {characters}. {combined_sentence}" | |
# Gradio interface with high concurrency limit | |
gradio_interface = gr.Interface( | |
fn=process_prompt, | |
inputs=[ | |
gr.JSON(label="Sentence Mapping"), | |
gr.JSON(label="Character Dict"), | |
gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style") | |
], | |
outputs="json", | |
concurrency_limit=20 # Set a high concurrency limit | |
).queue(default_concurrency_limit=20) | |
if __name__ == "__main__": | |
gradio_interface.launch() | |