text2image_1 / app.py
RanM's picture
Update app.py
c9b9787 verified
raw
history blame
3.18 kB
from generate_prompts import generate_prompt
import gradio as gr
from diffusers import AutoPipelineForText2Image
from io import BytesIO
import asyncio
# Load the model once outside of the function
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
async def generate_image(prompt, prompt_name):
try:
print(f"Generating image for {prompt_name}")
output = await asyncio.to_thread(model, prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
# Check if the model returned images
if isinstance(output.images, list) and len(output.images) > 0:
image = output.images[0]
buffered = BytesIO()
try:
image.save(buffered, format="JPEG")
image_bytes = buffered.getvalue()
print(f"Image bytes length for {prompt_name}: {len(image_bytes)}")
return image_bytes
except Exception as e:
print(f"Error saving image for {prompt_name}: {e}")
return None
else:
raise Exception(f"No images returned by the model for {prompt_name}.")
except Exception as e:
print(f"Error generating image for {prompt_name}: {e}")
return None
async def process_prompt(sentence_mapping, character_dict, selected_style):
images = {}
print(f'sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}')
prompts = []
# Generate prompts for each paragraph
for paragraph_number, sentences in sentence_mapping.items():
combined_sentence = " ".join(sentences)
prompt = generate_prompt(combined_sentence, character_dict, selected_style)
prompts.append((paragraph_number, prompt))
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
# Create tasks for all prompts and run them concurrently
tasks = [generate_image(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
results = await asyncio.gather(*tasks)
# Map results back to paragraphs
for i, (paragraph_number, _) in enumerate(prompts):
if i < len(results):
images[paragraph_number] = results[i]
else:
print(f"Error: No result for paragraph {paragraph_number}")
return images
# Helper function to generate a prompt based on the input
def generate_prompt(combined_sentence, character_dict, selected_style):
characters = " ".join([" ".join(character) if isinstance(character, list) else character for character in character_dict.values()])
return f"Make an illustration in {selected_style} style from: {characters}. {combined_sentence}"
# Gradio interface with high concurrency limit
gradio_interface = gr.Interface(
fn=process_prompt,
inputs=[
gr.JSON(label="Sentence Mapping"),
gr.JSON(label="Character Dict"),
gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")
],
outputs="json",
concurrency_limit=20 # Set a high concurrency limit
).queue(default_concurrency_limit=20)
if __name__ == "__main__":
gradio_interface.launch()