Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
from generate_prompts import generate_prompt
|
2 |
import gradio as gr
|
3 |
-
import torch
|
4 |
from diffusers import AutoPipelineForText2Image
|
5 |
from io import BytesIO
|
6 |
import asyncio
|
@@ -8,11 +7,10 @@ import asyncio
|
|
8 |
# Load the model once outside of the function
|
9 |
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
10 |
|
11 |
-
async def generate_image(prompt):
|
12 |
try:
|
13 |
-
|
14 |
output = await asyncio.to_thread(model, prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
|
15 |
-
print(f"Model output: {output}")
|
16 |
|
17 |
# Check if the model returned images
|
18 |
if isinstance(output.images, list) and len(output.images) > 0:
|
@@ -21,16 +19,15 @@ async def generate_image(prompt):
|
|
21 |
try:
|
22 |
image.save(buffered, format="JPEG")
|
23 |
image_bytes = buffered.getvalue()
|
24 |
-
|
25 |
-
print(f"Image bytes length: {len(image_bytes)}")
|
26 |
return image_bytes
|
27 |
except Exception as e:
|
28 |
-
print(f"Error saving image: {e}")
|
29 |
return None
|
30 |
else:
|
31 |
-
raise Exception("No images returned by the model.")
|
32 |
except Exception as e:
|
33 |
-
print(f"Error generating image: {e}")
|
34 |
return None
|
35 |
|
36 |
async def process_prompt(sentence_mapping, character_dict, selected_style):
|
@@ -46,7 +43,7 @@ async def process_prompt(sentence_mapping, character_dict, selected_style):
|
|
46 |
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
|
47 |
|
48 |
# Create tasks for all prompts and run them concurrently
|
49 |
-
tasks = [generate_image(prompt) for
|
50 |
results = await asyncio.gather(*tasks)
|
51 |
|
52 |
# Map results back to paragraphs
|
@@ -76,4 +73,4 @@ gradio_interface = gr.Interface(
|
|
76 |
).queue(default_concurrency_limit=20)
|
77 |
|
78 |
if __name__ == "__main__":
|
79 |
-
gradio_interface.launch()
|
|
|
1 |
from generate_prompts import generate_prompt
|
2 |
import gradio as gr
|
|
|
3 |
from diffusers import AutoPipelineForText2Image
|
4 |
from io import BytesIO
|
5 |
import asyncio
|
|
|
7 |
# Load the model once outside of the function
|
8 |
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
9 |
|
10 |
+
async def generate_image(prompt, prompt_name):
|
11 |
try:
|
12 |
+
print(f"Generating image for {prompt_name}")
|
13 |
output = await asyncio.to_thread(model, prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
|
|
|
14 |
|
15 |
# Check if the model returned images
|
16 |
if isinstance(output.images, list) and len(output.images) > 0:
|
|
|
19 |
try:
|
20 |
image.save(buffered, format="JPEG")
|
21 |
image_bytes = buffered.getvalue()
|
22 |
+
print(f"Image bytes length for {prompt_name}: {len(image_bytes)}")
|
|
|
23 |
return image_bytes
|
24 |
except Exception as e:
|
25 |
+
print(f"Error saving image for {prompt_name}: {e}")
|
26 |
return None
|
27 |
else:
|
28 |
+
raise Exception(f"No images returned by the model for {prompt_name}.")
|
29 |
except Exception as e:
|
30 |
+
print(f"Error generating image for {prompt_name}: {e}")
|
31 |
return None
|
32 |
|
33 |
async def process_prompt(sentence_mapping, character_dict, selected_style):
|
|
|
43 |
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
|
44 |
|
45 |
# Create tasks for all prompts and run them concurrently
|
46 |
+
tasks = [generate_image(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
|
47 |
results = await asyncio.gather(*tasks)
|
48 |
|
49 |
# Map results back to paragraphs
|
|
|
73 |
).queue(default_concurrency_limit=20)
|
74 |
|
75 |
if __name__ == "__main__":
|
76 |
+
gradio_interface.launch()
|