Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
from generate_prompts import generate_prompt
|
| 2 |
import gradio as gr
|
| 3 |
-
import torch
|
| 4 |
from diffusers import AutoPipelineForText2Image
|
| 5 |
from io import BytesIO
|
| 6 |
import asyncio
|
|
@@ -8,11 +7,10 @@ import asyncio
|
|
| 8 |
# Load the model once outside of the function
|
| 9 |
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
| 10 |
|
| 11 |
-
async def generate_image(prompt):
|
| 12 |
try:
|
| 13 |
-
|
| 14 |
output = await asyncio.to_thread(model, prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
|
| 15 |
-
print(f"Model output: {output}")
|
| 16 |
|
| 17 |
# Check if the model returned images
|
| 18 |
if isinstance(output.images, list) and len(output.images) > 0:
|
|
@@ -21,16 +19,15 @@ async def generate_image(prompt):
|
|
| 21 |
try:
|
| 22 |
image.save(buffered, format="JPEG")
|
| 23 |
image_bytes = buffered.getvalue()
|
| 24 |
-
|
| 25 |
-
print(f"Image bytes length: {len(image_bytes)}")
|
| 26 |
return image_bytes
|
| 27 |
except Exception as e:
|
| 28 |
-
print(f"Error saving image: {e}")
|
| 29 |
return None
|
| 30 |
else:
|
| 31 |
-
raise Exception("No images returned by the model.")
|
| 32 |
except Exception as e:
|
| 33 |
-
print(f"Error generating image: {e}")
|
| 34 |
return None
|
| 35 |
|
| 36 |
async def process_prompt(sentence_mapping, character_dict, selected_style):
|
|
@@ -46,7 +43,7 @@ async def process_prompt(sentence_mapping, character_dict, selected_style):
|
|
| 46 |
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
|
| 47 |
|
| 48 |
# Create tasks for all prompts and run them concurrently
|
| 49 |
-
tasks = [generate_image(prompt) for
|
| 50 |
results = await asyncio.gather(*tasks)
|
| 51 |
|
| 52 |
# Map results back to paragraphs
|
|
@@ -76,4 +73,4 @@ gradio_interface = gr.Interface(
|
|
| 76 |
).queue(default_concurrency_limit=20)
|
| 77 |
|
| 78 |
if __name__ == "__main__":
|
| 79 |
-
gradio_interface.launch()
|
|
|
|
| 1 |
from generate_prompts import generate_prompt
|
| 2 |
import gradio as gr
|
|
|
|
| 3 |
from diffusers import AutoPipelineForText2Image
|
| 4 |
from io import BytesIO
|
| 5 |
import asyncio
|
|
|
|
| 7 |
# Load the model once outside of the function
|
| 8 |
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
| 9 |
|
| 10 |
+
async def generate_image(prompt, prompt_name):
|
| 11 |
try:
|
| 12 |
+
print(f"Generating image for {prompt_name}")
|
| 13 |
output = await asyncio.to_thread(model, prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
|
|
|
|
| 14 |
|
| 15 |
# Check if the model returned images
|
| 16 |
if isinstance(output.images, list) and len(output.images) > 0:
|
|
|
|
| 19 |
try:
|
| 20 |
image.save(buffered, format="JPEG")
|
| 21 |
image_bytes = buffered.getvalue()
|
| 22 |
+
print(f"Image bytes length for {prompt_name}: {len(image_bytes)}")
|
|
|
|
| 23 |
return image_bytes
|
| 24 |
except Exception as e:
|
| 25 |
+
print(f"Error saving image for {prompt_name}: {e}")
|
| 26 |
return None
|
| 27 |
else:
|
| 28 |
+
raise Exception(f"No images returned by the model for {prompt_name}.")
|
| 29 |
except Exception as e:
|
| 30 |
+
print(f"Error generating image for {prompt_name}: {e}")
|
| 31 |
return None
|
| 32 |
|
| 33 |
async def process_prompt(sentence_mapping, character_dict, selected_style):
|
|
|
|
| 43 |
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
|
| 44 |
|
| 45 |
# Create tasks for all prompts and run them concurrently
|
| 46 |
+
tasks = [generate_image(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
|
| 47 |
results = await asyncio.gather(*tasks)
|
| 48 |
|
| 49 |
# Map results back to paragraphs
|
|
|
|
| 73 |
).queue(default_concurrency_limit=20)
|
| 74 |
|
| 75 |
if __name__ == "__main__":
|
| 76 |
+
gradio_interface.launch()
|