text2image_1 / app.py
RanM's picture
Update app.py
3486e1a verified
raw
history blame
2.14 kB
import json
import gradio as gr
import torch
from diffusers import AutoPipelineForText2Image
import base64
from io import BytesIO
from generate_propmts import generate_prompt
from concurrent.futures import ThreadPoolExecutor
# Load the model once outside of the function
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
def generate_image(text, sentence_mapping, character_dict, selected_style):
try:
prompt, _ = generate_prompt(text, sentence_mapping, character_dict, selected_style)
image = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0).images[0]
buffered = BytesIO()
buffered.write(image.tobytes())
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return img_str
except Exception as e:
print(f"Error generating image: {e}")
return None
def inference(sentence_mapping, character_dict, selected_style):
images = {}
print(f'sentence_mapping:{sentence_mapping}, character_dict:{character_dict}, selected_style:{selected_style}')
# Parse sentence_mapping JSON string into a dictionary
try:
grouped_sentences = json.loads(sentence_mapping)
except json.JSONDecodeError as e:
print(f"Error parsing JSON: {e}")
return {"error": "Invalid JSON input for sentence_mapping"}
with ThreadPoolExecutor() as executor:
futures = {}
for paragraph_number, sentences in grouped_sentences.items():
combined_sentence = " ".join(sentences)
futures[paragraph_number] = executor.submit(generate_image, combined_sentence, grouped_sentences, character_dict, selected_style)
for paragraph_number, future in futures.items():
images[paragraph_number] = future.result()
return images
gradio_interface = gr.Interface(
fn=inference,
inputs=[
gr.Textbox(label="Sentence Mapping (JSON)"),
gr.Textbox(label="Character Dict (JSON)"),
gr.Dropdown(["Style 1", "Style 2", "Style 3"], label="Selected Style")
],
outputs="text"
)
if __name__ == "__main__":
gradio_interface.launch()