import json import gradio as gr import torch from diffusers import AutoPipelineForText2Image import base64 from io import BytesIO from generate_propmts import generate_prompt from concurrent.futures import ThreadPoolExecutor # Load the model once outside of the function model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo") def generate_image(text, sentence_mapping, character_dict, selected_style): try: prompt, _ = generate_prompt(text, sentence_mapping, character_dict, selected_style) image = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0).images[0] buffered = BytesIO() buffered.write(image.tobytes()) img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") return img_str except Exception as e: print(f"Error generating image: {e}") return None def inference(sentence_mapping, character_dict, selected_style): images = {} print(f'sentence_mapping:{sentence_mapping}, character_dict:{character_dict}, selected_style:{selected_style}') # Parse sentence_mapping JSON string into a dictionary try: grouped_sentences = json.loads(sentence_mapping) except json.JSONDecodeError as e: print(f"Error parsing JSON: {e}") return {"error": "Invalid JSON input for sentence_mapping"} with ThreadPoolExecutor() as executor: futures = {} for paragraph_number, sentences in grouped_sentences.items(): combined_sentence = " ".join(sentences) futures[paragraph_number] = executor.submit(generate_image, combined_sentence, grouped_sentences, character_dict, selected_style) for paragraph_number, future in futures.items(): images[paragraph_number] = future.result() return images gradio_interface = gr.Interface( fn=inference, inputs=[ gr.Textbox(label="Sentence Mapping (JSON)"), gr.Textbox(label="Character Dict (JSON)"), gr.Dropdown(["Style 1", "Style 2", "Style 3"], label="Selected Style") ], outputs="text" ) if __name__ == "__main__": gradio_interface.launch()