File size: 1,540 Bytes
f466dd9
 
a9b8939
9e09422
 
8a0f059
a9b8939
 
6d1d03a
8a0f059
f466dd9
8a0f059
a9b8939
8a0f059
 
 
 
 
f466dd9
8a0f059
f466dd9
 
8a0f059
 
 
a9b8939
8a0f059
 
 
 
ca1d41c
f466dd9
 
 
 
9e09422
f466dd9
 
 
a9b8939
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import gradio as gr
import torch
from diffusers import AutoPipelineForText2Image
import base64
from io import BytesIO
from generate_propmts.py import generate_prompt
# Load the model once outside of the function
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")

def generate_image(text, sentence_mapping, character_dict, selected_style):
    try:
        prompt,_ = generate_prompt(text, sentence_mapping, character_dict, selected_style)
        image = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0).images[0]
        buffered = BytesIO()
        img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
        if isinstance(result, img_str):
            image_bytes = base64.b64decode(result)
            return image_bytes
    except Exception as e:
        return None

def inference(prompt):
    # Dictionary to store images results
    images = {}
    print(f"Received grouped_sentences: {grouped_sentences}")
    # Debugging statement
    with concurrent.images.ThreadPoolExecutor() as executor:
        for paragraph_number, sentences in grouped_sentences.items():
            combined_sentence = " ".join(sentences)
            images[paragraph_number] = executor.submit(generate_image, combined_sentence, sentence_mapping, general_descriptions, selected_style)
    return images

gradio_interface = gr.Interface(
    fn=inference,
    inputs="text",
    outputs="text"  # Change output to text to return base64 string
)

if __name__ == "__main__":
    gradio_interface.launch()