RanM commited on
Commit
8a0f059
·
verified ·
1 Parent(s): 1a30639

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -15
app.py CHANGED
@@ -3,30 +3,32 @@ import torch
3
  from diffusers import AutoPipelineForText2Image
4
  import base64
5
  from io import BytesIO
6
-
7
  # Load the model once outside of the function
8
  model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
9
 
10
- def generate_image(prompt):
11
  try:
 
12
  image = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0).images[0]
13
- return image, None
 
 
 
 
14
  except Exception as e:
15
- return None, str(e)
16
 
17
  def inference(prompt):
18
- print(f"Received prompt: {prompt}")
 
 
19
  # Debugging statement
20
- image, error = generate_image(prompt)
21
- if error:
22
- print(f"Error generating image: {error}")
23
- # Debugging statement
24
- return "Error: " + error
25
-
26
- buffered = BytesIO()
27
- image.save(buffered, format="PNG")
28
- img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
29
- return img_str
30
 
31
  gradio_interface = gr.Interface(
32
  fn=inference,
 
3
  from diffusers import AutoPipelineForText2Image
4
  import base64
5
  from io import BytesIO
6
+ from generate_propmts.py import generate_prompt
7
  # Load the model once outside of the function
8
  model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
9
 
10
+ def generate_image(text, sentence_mapping, character_dict, selected_style):
11
  try:
12
+ prompt,_ = generate_prompt(text, sentence_mapping, character_dict, selected_style)
13
  image = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0).images[0]
14
+ buffered = BytesIO()
15
+ img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
16
+ if isinstance(result, img_str):
17
+ image_bytes = base64.b64decode(result)
18
+ return image_bytes
19
  except Exception as e:
20
+ return None
21
 
22
  def inference(prompt):
23
+ # Dictionary to store images results
24
+ images = {}
25
+ print(f"Received grouped_sentences: {grouped_sentences}")
26
  # Debugging statement
27
+ with concurrent.images.ThreadPoolExecutor() as executor:
28
+ for paragraph_number, sentences in grouped_sentences.items():
29
+ combined_sentence = " ".join(sentences)
30
+ images[paragraph_number] = executor.submit(generate_image, combined_sentence, sentence_mapping, general_descriptions, selected_style)
31
+ repr images
 
 
 
 
 
32
 
33
  gradio_interface = gr.Interface(
34
  fn=inference,