File size: 3,158 Bytes
081cd9c
bc0d978
0cdadc9
cd42042
b85438c
0cdadc9
6dc4bbd
13298a2
081cd9c
f466dd9
c9b9787
081cd9c
6dc4bbd
bc0d978
 
 
f466dd9
c9b9787
789e6b5
d26a101
081cd9c
 
 
 
 
 
 
 
 
 
 
 
 
 
bc0d978
 
081cd9c
bc0d978
 
 
 
081cd9c
 
 
 
 
bc0d978
081cd9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f466dd9
 
bc0d978
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import asyncio
import gradio as gr
from diffusers import AutoPipelineForText2Image
from generate_prompts import generate_prompt

# Load the model once outside of the function
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")

async def generate_image(prompt, prompt_name):
    try:
        print(f"Generating image for {prompt_name}")
        output = await model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
        image = output.images[0]
        img_bytes = image.tobytes()
        print(f"Image bytes length for {prompt_name}: {len(img_bytes)}")
        return img_bytes
    except Exception as e:
        print(f"Error generating image for {prompt_name}: {e}")
        return None

async def queue_image_calls(prompts):
    tasks = [generate_image(prompts[i], f"Prompt {i}") for i in range(len(prompts))]
    responses = await asyncio.gather(*tasks)
    return responses

def async_image_generation(prompts):
    try:
        loop = asyncio.get_running_loop()
    except RuntimeError:
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)
    results = loop.run_until_complete(queue_image_calls(prompts))
    return results

def gradio_interface(sentence_mapping, character_dict, selected_style):
    prompts = generate_prompt(sentence_mapping, character_dict, selected_style)
    image_bytes_list = async_image_generation(prompts)
    outputs = [gr.Image.update(value=img_bytes) if img_bytes else gr.Image.update(value=None) for img_bytes in image_bytes_list]
    return outputs

# Gradio Interface
def update_images(sentence_mapping, character_dict, selected_style):
    prompts = generate_prompt(sentence_mapping, character_dict, selected_style)
    image_bytes_list = async_image_generation(prompts)
    return image_bytes_list

with gr.Blocks() as demo:
    sentence_mapping_input = gr.Textbox(label="Sentence Mapping")
    character_dict_input = gr.Textbox(label="Character Dictionary")
    selected_style_input = gr.Textbox(label="Selected Style")
    
    output_images = gr.Gallery(label="Generated Images").style(grid=[2], height=300)

    def generate_and_update_images(sentence_mapping, character_dict, selected_style):
        image_bytes_list = update_images(sentence_mapping, character_dict, selected_style)
        return [gr.Image.update(value=img_bytes) if img_bytes else gr.Image.update(value=None) for img_bytes in image_bytes_list]

    sentence_mapping_input.change(fn=generate_and_update_images, 
                                  inputs=[sentence_mapping_input, character_dict_input, selected_style_input],
                                  outputs=output_images)
    character_dict_input.change(fn=generate_and_update_images, 
                                inputs=[sentence_mapping_input, character_dict_input, selected_style_input],
                                outputs=output_images)
    selected_style_input.change(fn=generate_and_update_images, 
                                inputs=[sentence_mapping_input, character_dict_input, selected_style_input],
                                outputs=output_images)

if __name__ == "__main__":
    demo.launch()