Spaces:
Runtime error
Runtime error
File size: 2,449 Bytes
f6b8b7e a9b8939 f6b8b7e c1282a1 216a041 c1282a1 b5ad13a f6b8b7e 6d1d03a 216a041 f466dd9 97d1a98 03835a9 216a041 89a9597 d26a101 e0ec116 d26a101 f6b8b7e c301a62 6449f8f d26a101 f466dd9 b5ad13a c1282a1 d26a101 216a041 6035350 1d0b035 e0ec116 f6b8b7e e0ec116 6449f8f 6035350 e0ec116 b5ad13a 216a041 e0ec116 216a041 b5ad13a 6035350 f466dd9 d05fa5e 1adc78a e0ec116 d05fa5e 6035350 58f74fc f466dd9 a9b8939 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import gradio as gr
from diffusers import AutoPipelineForText2Image
from generate_propmts import generate_prompt
from PIL import Image
import asyncio
import traceback
# Load the model once outside of the function
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
async def generate_image(prompt):
try:
# Use a higher value for num_inference_steps to avoid IndexError
num_inference_steps = 3 # Adjust this value as needed
# Use the model to generate an image
output = await asyncio.to_thread(
model,
prompt=prompt,
num_inference_steps=num_inference_steps, # Use a higher value for inference steps
guidance_scale=0.0, # Typical value for guidance scale in image generation
output_type="pil" # Directly get PIL Image objects
)
# Check for output validity and return
if output.images:
return output.images[0]
else:
raise Exception("No images returned by the model.")
except Exception as e:
print(f"Error generating image: {e}")
traceback.print_exc()
return None # Return None on error to handle it gracefully in the UI
async def inference(sentence_mapping, character_dict, selected_style):
images = []
print(f'sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}')
prompts = []
# Generate prompts for each paragraph
for paragraph_number, sentences in sentence_mapping.items():
combined_sentence = " ".join(sentences)
prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
prompts.append(prompt)
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
# Use asyncio.gather to run generate_image in parallel
tasks = [generate_image(prompt) for prompt in prompts]
images = await asyncio.gather(*tasks)
# Filter out None values
images = [image for image in images if image is not None]
return images
gradio_interface = gr.Interface(
fn=inference,
inputs=[
gr.JSON(label="Sentence Mapping"),
gr.JSON(label="Character Dict"),
gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")
],
outputs=gr.Gallery(label="Generated Images")
)
if __name__ == "__main__":
gradio_interface.launch()
|