Rammohan0504 commited on
Commit
f015ce3
·
verified ·
1 Parent(s): 32c2dd4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -8
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import gradio as gr
2
  import cv2
3
  import numpy as np
@@ -6,8 +7,8 @@ from sklearn.linear_model import LinearRegression
6
  import random
7
  import base64
8
  import joblib
9
- import shutil
10
  from datetime import datetime
 
11
  from reportlab.lib.pagesizes import letter
12
  from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
13
  from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
@@ -20,7 +21,6 @@ face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True,
20
  refine_landmarks=True,
21
  min_detection_confidence=0.5)
22
 
23
-
24
  # Functions for feature extraction
25
  def extract_features(image, landmarks):
26
  red_channel = image[:, :, 2]
@@ -242,7 +242,6 @@ def analyze_face(input_data):
242
  # Resize image to reduce processing time
243
  frame = cv2.resize(frame, (640, 480)) # Adjust resolution for Replit
244
  frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
245
- # Provide image dimensions to mediapipe to avoid NORM_RECT warning
246
  result = face_mesh.process(frame_rgb)
247
  if not result.multi_face_landmarks:
248
  return "<div style='color:red;'>⚠️ Error: Face not detected.</div>", None
@@ -379,12 +378,11 @@ with gr.Blocks() as demo:
379
  submit_btn = gr.Button("🔍 Analyze")
380
  with gr.Column():
381
  result_html = gr.HTML(label="🧪 Health Report Table")
382
- result_image = gr.Image(label="📷 Key Frame Snapshot")
383
- result_pdf = gr.File(label="Download Health Report PDF")
384
 
385
- submit_btn.click(fn=route_inputs,
386
- inputs=[mode_selector, image_input, video_input, patient_name, patient_age, patient_gender, patient_id],
387
- outputs=[result_html, result_pdf])
388
 
389
  # Launch Gradio for Replit
390
  demo.launch(server_name="0.0.0.0", server_port=7860)
 
1
+ import os # Import the os module
2
  import gradio as gr
3
  import cv2
4
  import numpy as np
 
7
  import random
8
  import base64
9
  import joblib
 
10
  from datetime import datetime
11
+ import shutil
12
  from reportlab.lib.pagesizes import letter
13
  from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
14
  from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
 
21
  refine_landmarks=True,
22
  min_detection_confidence=0.5)
23
 
 
24
  # Functions for feature extraction
25
  def extract_features(image, landmarks):
26
  red_channel = image[:, :, 2]
 
242
  # Resize image to reduce processing time
243
  frame = cv2.resize(frame, (640, 480)) # Adjust resolution for Replit
244
  frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
 
245
  result = face_mesh.process(frame_rgb)
246
  if not result.multi_face_landmarks:
247
  return "<div style='color:red;'>⚠️ Error: Face not detected.</div>", None
 
378
  submit_btn = gr.Button("🔍 Analyze")
379
  with gr.Column():
380
  result_html = gr.HTML(label="🧪 Health Report Table")
381
+ result_pdf = gr.File(label="Download Health Report PDF", interactive=False)
 
382
 
383
+ submit_btn.click(fn=route_inputs,
384
+ inputs=[mode_selector, image_input, video_input, patient_name, patient_age, patient_gender, patient_id],
385
+ outputs=[result_html, result_pdf])
386
 
387
  # Launch Gradio for Replit
388
  demo.launch(server_name="0.0.0.0", server_port=7860)