Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,12 @@ from sklearn.linear_model import LinearRegression
|
|
6 |
import random
|
7 |
import base64
|
8 |
import joblib
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Initialize the face mesh model
|
12 |
mp_face_mesh = mp.solutions.face_mesh
|
@@ -15,6 +20,7 @@ face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True,
|
|
15 |
refine_landmarks=True,
|
16 |
min_detection_confidence=0.5)
|
17 |
|
|
|
18 |
# Functions for feature extraction
|
19 |
def extract_features(image, landmarks):
|
20 |
red_channel = image[:, :, 2]
|
@@ -27,6 +33,7 @@ def extract_features(image, landmarks):
|
|
27 |
|
28 |
return [red_percent, green_percent, blue_percent]
|
29 |
|
|
|
30 |
def train_model(output_range):
|
31 |
X = [[
|
32 |
random.uniform(0.2, 0.5),
|
@@ -113,34 +120,49 @@ def build_table(title, rows):
|
|
113 |
return html
|
114 |
|
115 |
|
116 |
-
#
|
117 |
-
def
|
118 |
-
pdf = FPDF()
|
119 |
-
pdf.set_auto_page_break(auto=True, margin=15)
|
120 |
-
|
121 |
-
# Add a page to the PDF
|
122 |
-
pdf.add_page()
|
123 |
-
|
124 |
-
# Add a custom font (download a TTF font that supports Unicode characters and emojis)
|
125 |
-
# Here, 'Arial Unicode MS' is used as an example, but you can use any font supporting emojis
|
126 |
-
# Make sure to have the TTF file in your project and pass it as an argument to add_font
|
127 |
try:
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
except Exception as e:
|
131 |
-
|
132 |
-
pdf.set_font('Arial', '', 12) # Fallback to a default font if custom font fails
|
133 |
-
|
134 |
-
# Add a title
|
135 |
-
pdf.cell(200, 10, txt="Face-Based Health Report", ln=True, align="C")
|
136 |
-
|
137 |
-
# Write the report HTML content into the PDF
|
138 |
-
pdf.multi_cell(0, 10, txt=report_html)
|
139 |
-
|
140 |
-
# Save the PDF to a file
|
141 |
-
pdf_output = "/mnt/data/health_report.pdf"
|
142 |
-
pdf.output(pdf_output)
|
143 |
-
return pdf_output
|
144 |
|
145 |
|
146 |
# Build health card layout
|
@@ -150,6 +172,7 @@ def build_health_card(profile_image, test_results, summary, patient_name="", pat
|
|
150 |
|
151 |
html = f"""
|
152 |
<div id="health-card" style="font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; max-width: 700px; margin: 20px auto; border-radius: 16px; background: linear-gradient(135deg, #e3f2fd 0%, #f3e5f5 100%); border: 2px solid #ddd; box-shadow: 0 8px 32px rgba(0, 0, 0, 0.15); padding: 30px; color: #1a1a1a;">
|
|
|
153 |
<div style="background-color: rgba(255, 255, 255, 0.9); border-radius: 12px; padding: 20px; margin-bottom: 25px; border: 1px solid #e0e0e0;">
|
154 |
<div style="display: flex; align-items: center; margin-bottom: 15px;">
|
155 |
<div style="background: linear-gradient(135deg, #64b5f6, #42a5f5); padding: 8px 16px; border-radius: 8px; margin-right: 20px;">
|
@@ -184,6 +207,15 @@ def build_health_card(profile_image, test_results, summary, patient_name="", pat
|
|
184 |
{summary}
|
185 |
</div>
|
186 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
</div>
|
188 |
"""
|
189 |
return html
|
@@ -210,6 +242,7 @@ def analyze_face(input_data):
|
|
210 |
# Resize image to reduce processing time
|
211 |
frame = cv2.resize(frame, (640, 480)) # Adjust resolution for Replit
|
212 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
213 |
result = face_mesh.process(frame_rgb)
|
214 |
if not result.multi_face_landmarks:
|
215 |
return "<div style='color:red;'>⚠️ Error: Face not detected.</div>", None
|
@@ -292,10 +325,17 @@ def analyze_face(input_data):
|
|
292 |
current_patient_details['gender'],
|
293 |
current_patient_details['id']
|
294 |
)
|
295 |
-
|
296 |
-
# Generate PDF
|
297 |
-
|
298 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
|
300 |
|
301 |
# Modified route_inputs function
|
@@ -314,8 +354,8 @@ def route_inputs(mode, image, video, patient_name, patient_age, patient_gender,
|
|
314 |
'id': patient_id
|
315 |
}
|
316 |
|
317 |
-
pdf_file_path = analyze_face(image if mode == "Image" else video)
|
318 |
-
return pdf_file_path
|
319 |
|
320 |
|
321 |
# Create Gradio interface
|
@@ -338,11 +378,13 @@ with gr.Blocks() as demo:
|
|
338 |
sources=["upload", "webcam"])
|
339 |
submit_btn = gr.Button("🔍 Analyze")
|
340 |
with gr.Column():
|
341 |
-
|
|
|
|
|
342 |
|
343 |
submit_btn.click(fn=route_inputs,
|
344 |
inputs=[mode_selector, image_input, video_input, patient_name, patient_age, patient_gender, patient_id],
|
345 |
-
outputs=[
|
346 |
|
347 |
# Launch Gradio for Replit
|
348 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
6 |
import random
|
7 |
import base64
|
8 |
import joblib
|
9 |
+
import shutil
|
10 |
+
from datetime import datetime
|
11 |
+
from reportlab.lib.pagesizes import letter
|
12 |
+
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
|
13 |
+
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
14 |
+
from reportlab.lib import colors
|
15 |
|
16 |
# Initialize the face mesh model
|
17 |
mp_face_mesh = mp.solutions.face_mesh
|
|
|
20 |
refine_landmarks=True,
|
21 |
min_detection_confidence=0.5)
|
22 |
|
23 |
+
|
24 |
# Functions for feature extraction
|
25 |
def extract_features(image, landmarks):
|
26 |
red_channel = image[:, :, 2]
|
|
|
33 |
|
34 |
return [red_percent, green_percent, blue_percent]
|
35 |
|
36 |
+
|
37 |
def train_model(output_range):
|
38 |
X = [[
|
39 |
random.uniform(0.2, 0.5),
|
|
|
120 |
return html
|
121 |
|
122 |
|
123 |
+
# Function to save the health report to PDF
|
124 |
+
def save_results_to_pdf(test_results, filename):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
try:
|
126 |
+
# Create a PDF document
|
127 |
+
doc = SimpleDocTemplate(filename, pagesize=letter)
|
128 |
+
styles = getSampleStyleSheet()
|
129 |
+
|
130 |
+
# Define custom styles
|
131 |
+
title_style = ParagraphStyle(
|
132 |
+
name='Title',
|
133 |
+
fontSize=16,
|
134 |
+
leading=20,
|
135 |
+
alignment=1, # Center
|
136 |
+
spaceAfter=20,
|
137 |
+
textColor=colors.black,
|
138 |
+
fontName='Helvetica-Bold'
|
139 |
+
)
|
140 |
+
body_style = ParagraphStyle(
|
141 |
+
name='Body',
|
142 |
+
fontSize=12,
|
143 |
+
leading=14,
|
144 |
+
spaceAfter=10,
|
145 |
+
textColor=colors.black,
|
146 |
+
fontName='Helvetica'
|
147 |
+
)
|
148 |
+
|
149 |
+
# Build the PDF content
|
150 |
+
flowables = []
|
151 |
+
|
152 |
+
# Add title
|
153 |
+
flowables.append(Paragraph("Health Report", title_style))
|
154 |
+
|
155 |
+
# Add test results to the report
|
156 |
+
for label, value in test_results.items():
|
157 |
+
line = f"{label}: {value}"
|
158 |
+
flowables.append(Paragraph(line, body_style))
|
159 |
+
flowables.append(Spacer(1, 12))
|
160 |
+
|
161 |
+
# Build the PDF
|
162 |
+
doc.build(flowables)
|
163 |
+
return f"PDF saved successfully as {filename}", filename
|
164 |
except Exception as e:
|
165 |
+
return f"Error saving PDF: {str(e)}", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
|
168 |
# Build health card layout
|
|
|
172 |
|
173 |
html = f"""
|
174 |
<div id="health-card" style="font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; max-width: 700px; margin: 20px auto; border-radius: 16px; background: linear-gradient(135deg, #e3f2fd 0%, #f3e5f5 100%); border: 2px solid #ddd; box-shadow: 0 8px 32px rgba(0, 0, 0, 0.15); padding: 30px; color: #1a1a1a;">
|
175 |
+
|
176 |
<div style="background-color: rgba(255, 255, 255, 0.9); border-radius: 12px; padding: 20px; margin-bottom: 25px; border: 1px solid #e0e0e0;">
|
177 |
<div style="display: flex; align-items: center; margin-bottom: 15px;">
|
178 |
<div style="background: linear-gradient(135deg, #64b5f6, #42a5f5); padding: 8px 16px; border-radius: 8px; margin-right: 20px;">
|
|
|
207 |
{summary}
|
208 |
</div>
|
209 |
</div>
|
210 |
+
|
211 |
+
<div style="display: flex; gap: 15px; justify-content: center; flex-wrap: wrap;">
|
212 |
+
<button onclick="window.print()" style="padding: 12px 24px; background: linear-gradient(135deg, #4caf50, #45a049); color: white; border: none; border-radius: 8px; cursor: pointer; font-weight: 600; font-size: 14px; box-shadow: 0 4px 12px rgba(76, 175, 80, 0.3); transition: all 0.3s;">
|
213 |
+
📥 Download Report
|
214 |
+
</button>
|
215 |
+
<button style="padding: 12px 24px; background: linear-gradient(135deg, #2196f3, #1976d2); color: white; border: none; border-radius: 8px; cursor: pointer; font-weight: 600; font-size: 14px; box-shadow: 0 4px 12px rgba(33, 150, 243, 0.3);">
|
216 |
+
📞 Find Labs Near Me
|
217 |
+
</button>
|
218 |
+
</div>
|
219 |
</div>
|
220 |
"""
|
221 |
return html
|
|
|
242 |
# Resize image to reduce processing time
|
243 |
frame = cv2.resize(frame, (640, 480)) # Adjust resolution for Replit
|
244 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
245 |
+
# Provide image dimensions to mediapipe to avoid NORM_RECT warning
|
246 |
result = face_mesh.process(frame_rgb)
|
247 |
if not result.multi_face_landmarks:
|
248 |
return "<div style='color:red;'>⚠️ Error: Face not detected.</div>", None
|
|
|
325 |
current_patient_details['gender'],
|
326 |
current_patient_details['id']
|
327 |
)
|
328 |
+
|
329 |
+
# Generate PDF and return for download
|
330 |
+
pdf_filename = f"Health_Report_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.pdf"
|
331 |
+
pdf_result, pdf_filepath = save_results_to_pdf(test_results, pdf_filename)
|
332 |
+
|
333 |
+
if pdf_filepath:
|
334 |
+
# Copy the PDF to a temporary directory for Gradio to serve it
|
335 |
+
temp_pdf_path = "/tmp/" + os.path.basename(pdf_filepath)
|
336 |
+
shutil.copy(pdf_filepath, temp_pdf_path)
|
337 |
+
|
338 |
+
return health_card_html, temp_pdf_path
|
339 |
|
340 |
|
341 |
# Modified route_inputs function
|
|
|
354 |
'id': patient_id
|
355 |
}
|
356 |
|
357 |
+
health_card_html, pdf_file_path = analyze_face(image if mode == "Image" else video)
|
358 |
+
return health_card_html, pdf_file_path
|
359 |
|
360 |
|
361 |
# Create Gradio interface
|
|
|
378 |
sources=["upload", "webcam"])
|
379 |
submit_btn = gr.Button("🔍 Analyze")
|
380 |
with gr.Column():
|
381 |
+
result_html = gr.HTML(label="🧪 Health Report Table")
|
382 |
+
result_image = gr.Image(label="📷 Key Frame Snapshot")
|
383 |
+
result_pdf = gr.File(label="Download Health Report PDF")
|
384 |
|
385 |
submit_btn.click(fn=route_inputs,
|
386 |
inputs=[mode_selector, image_input, video_input, patient_name, patient_age, patient_gender, patient_id],
|
387 |
+
outputs=[result_html, result_pdf])
|
388 |
|
389 |
# Launch Gradio for Replit
|
390 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|