Spaces:
Sleeping
Sleeping
import gradio as gr | |
import cv2 | |
import numpy as np | |
import mediapipe as mp | |
from sklearn.linear_model import LinearRegression | |
import random | |
import base64 | |
import joblib | |
# Initialize the face mesh model | |
mp_face_mesh = mp.solutions.face_mesh | |
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refine_landmarks=True, min_detection_confidence=0.5) | |
# Functions for feature extraction | |
def extract_features(image, landmarks): | |
red_channel = image[:, :, 2] | |
green_channel = image[:, :, 1] | |
blue_channel = image[:, :, 0] | |
red_percent = 100 * np.mean(red_channel) / 255 | |
green_percent = 100 * np.mean(green_channel) / 255 | |
blue_percent = 100 * np.mean(blue_channel) / 255 | |
return [red_percent, green_percent, blue_percent] | |
def train_model(output_range): | |
X = [[random.uniform(0.2, 0.5), random.uniform(0.05, 0.2), random.uniform(0.05, 0.2), | |
random.uniform(0.2, 0.5), random.uniform(0.2, 0.5), random.uniform(0.2, 0.5), | |
random.uniform(0.2, 0.5)] for _ in range(100)] | |
y = [random.uniform(*output_range) for _ in X] | |
model = LinearRegression().fit(X, y) | |
return model | |
# Load models | |
hemoglobin_model = joblib.load("hemoglobin_model_from_anemia_dataset.pkl") | |
spo2_model = joblib.load("spo2_model_simulated.pkl") | |
hr_model = joblib.load("heart_rate_model.pkl") | |
models = { | |
"Hemoglobin": hemoglobin_model, | |
"WBC Count": train_model((4.0, 11.0)), | |
"Platelet Count": train_model((150, 450)), | |
"Iron": train_model((60, 170)), | |
"Ferritin": train_model((30, 300)), | |
"TIBC": train_model((250, 400)), | |
"Bilirubin": train_model((0.3, 1.2)), | |
"Creatinine": train_model((0.6, 1.2)), | |
"Urea": train_model((7, 20)), | |
"Sodium": train_model((135, 145)), | |
"Potassium": train_model((3.5, 5.1)), | |
"TSH": train_model((0.4, 4.0)), | |
"Cortisol": train_model((5, 25)), | |
"FBS": train_model((70, 110)), | |
"HbA1c": train_model((4.0, 5.7)), | |
"Albumin": train_model((3.5, 5.5)), | |
"BP Systolic": train_model((90, 120)), | |
"BP Diastolic": train_model((60, 80)), | |
"Temperature": train_model((97, 99)) | |
} | |
# Helper function for risk level color coding | |
def get_risk_color(value, normal_range): | |
low, high = normal_range | |
if value < low: | |
return ("Low", "π»", "#FFCCCC") | |
elif value > high: | |
return ("High", "πΊ", "#FFE680") | |
else: | |
return ("Normal", "β ", "#CCFFCC") | |
# Function to build table for test results | |
def build_table(title, rows): | |
html = ( | |
f'<div style="margin-bottom: 24px;">' | |
f'<h4 style="margin: 8px 0;">{title}</h4>' | |
f'<table style="width:100%; border-collapse:collapse;">' | |
f'<thead><tr style="background:#f0f0f0;"><th style="padding:8px;border:1px solid #ccc;">Test</th><th style="padding:8px;border:1px solid #ccc;">Result</th><th style="padding:8px;border:1px solid #ccc;">Expected Range</th><th style="padding:8px;border:1px solid #ccc;">Level</th></tr></thead><tbody>' | |
) | |
for label, value, ref in rows: | |
level, icon, bg = get_risk_color(value, ref) | |
html += f'<tr style="background:{bg};"><td style="padding:6px;border:1px solid #ccc;">{label}</td><td style="padding:6px;border:1px solid #ccc;">{value:.2f}</td><td style="padding:6px;border:1px solid #ccc;">{ref[0]} β {ref[1]}</td><td style="padding:6px;border:1px solid #ccc;">{icon} {level}</td></tr>' | |
html += '</tbody></table></div>' | |
return html | |
# Build health card layout | |
def build_health_card(profile_image, test_results, summary): | |
html = f""" | |
<div style="font-family: Arial, sans-serif; max-width: 600px; margin: 20px auto; border-radius: 12px; background-color: #f3f8fc; box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); padding: 20px; color: #333;"> | |
<div style="display: flex; align-items: center; margin-bottom: 20px;"> | |
<img src="data:image/png;base64,{profile_image}" alt="Profile" style="width: 80px; height: 80px; border-radius: 50%; margin-right: 15px;"> | |
<div> | |
<h2 style="margin: 0; font-size: 24px;">Health Card</h2> | |
<p style="margin: 5px 0; color: #777;">Lab Test Results</p> | |
</div> | |
</div> | |
<div style="font-size: 16px; margin-bottom: 20px;"> | |
{test_results['Hematology']} <!-- Single reference to Hematology --> | |
{test_results['Iron Panel']} | |
{test_results['Liver & Kidney']} | |
{test_results['Electrolytes']} | |
{test_results['Vitals']} | |
</div> | |
<div style="background-color: #ffffff; padding: 15px; border-radius: 8px; box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);"> | |
<h4 style="margin: 0;">π Summary for You</h4> | |
<ul style="margin-top: 10px; color: #555;"> | |
{summary} | |
</ul> | |
</div> | |
<div style="margin-top: 20px; text-align: center;"> | |
<h4>π Book a Lab Test</h4> | |
<p style="color: #777;">Prefer confirmation? Find certified labs near you.</p> | |
<button style="padding: 10px 20px; background-color: #007BFF; color: white; border: none; border-radius: 5px; cursor: pointer;"> | |
Find Labs Near Me | |
</button> | |
</div> | |
</div> | |
""" | |
return html | |
# Analyze face and return results | |
def analyze_face(image): | |
if image is None: | |
return "<div style='color:red;'>β οΈ Error: No image provided.</div>", None | |
frame_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
result = face_mesh.process(frame_rgb) | |
if not result.multi_face_landmarks: | |
return "<div style='color:red;'>β οΈ Error: Face not detected.</div>", None | |
landmarks = result.multi_face_landmarks[0].landmark | |
features = extract_features(frame_rgb, landmarks) | |
test_values = {} | |
r2_scores = {} | |
for label in models: | |
if label == "Hemoglobin": | |
prediction = models[label].predict([features])[0] | |
test_values[label] = prediction | |
r2_scores[label] = 0.385 | |
else: | |
value = models[label].predict([[random.uniform(0.2, 0.5) for _ in range(7)]])[0] | |
test_values[label] = value | |
r2_scores[label] = 0.0 # simulate other 7D inputs | |
gray = cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2GRAY) | |
green_std = np.std(frame_rgb[:, :, 1]) / 255 | |
brightness_std = np.std(gray) / 255 | |
tone_index = np.mean(frame_rgb[100:150, 100:150]) / 255 if frame_rgb[100:150, 100:150].size else 0.5 | |
hr_features = [brightness_std, green_std, tone_index] | |
heart_rate = float(np.clip(hr_model.predict([hr_features])[0], 60, 100)) | |
skin_patch = frame_rgb[100:150, 100:150] | |
skin_tone_index = np.mean(skin_patch) / 255 if skin_patch.size else 0.5 | |
brightness_variation = np.std(cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2GRAY)) / 255 | |
spo2_features = [heart_rate, brightness_variation, skin_tone_index] | |
spo2 = spo2_model.predict([spo2_features])[0] | |
rr = int(12 + abs(heart_rate % 5 - 2)) | |
# Prepare the test results | |
test_results = { | |
"Hematology": build_table("π©Έ Hematology", [("Hemoglobin", test_values["Hemoglobin"], (13.5, 17.5)), | |
("WBC Count", test_values["WBC Count"], (4.0, 11.0)), | |
("Platelet Count", test_values["Platelet Count"], (150, 450))]), | |
"Iron Panel": build_table("𧬠Iron Panel", [("Iron", test_values["Iron"], (60, 170)), | |
("Ferritin", test_values["Ferritin"], (30, 300)), | |
("TIBC", test_values["TIBC"], (250, 400))]), | |
"Liver & Kidney": build_table("𧬠Liver & Kidney", [("Bilirubin", test_values["Bilirubin"], (0.3, 1.2)), | |
("Creatinine", test_values["Creatinine"], (0.6, 1.2)), | |
("Urea", test_values["Urea"], (7, 20))]), | |
"Electrolytes": build_table("π§ͺ Electrolytes", [("Sodium", test_values["Sodium"], (135, 145)), | |
("Potassium", test_values["Potassium"], (3.5, 5.1))]), | |
"Vitals": build_table("β€οΈ Vitals", [("SpO2", spo2, (95, 100)), | |
("Heart Rate", heart_rate, (60, 100)), | |
("Respiratory Rate", rr, (12, 20)), | |
("Temperature", test_values["Temperature"], (97, 99)), | |
("BP Systolic", test_values["BP Systolic"], (90, 120)), | |
("BP Diastolic", test_values["BP Diastolic"], (60, 80))]) | |
} | |
summary = "<ul><li>Your hemoglobin is a bit low β this could mean mild anemia.</li><li>Low iron storage detected β consider an iron profile test.</li><li>Elevated bilirubin β possible jaundice. Recommend LFT.</li><li>High HbA1c β prediabetes indication. Recommend glucose check.</li><li>Low SpOβ β suggest retesting with a pulse oximeter.</li></ul>" | |
# Convert frame_rgb to base64 for profile picture (this is temporary placeholder) | |
_, buffer = cv2.imencode('.png', frame_rgb) | |
profile_image_base64 = base64.b64encode(buffer).decode('utf-8') | |
# Generate Health Card HTML | |
health_card_html = build_health_card(profile_image_base64, test_results, summary) | |
return health_card_html, frame_rgb | |
# Create Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("""# π§ Face-Based Lab Test AI Report (Video Mode)""") | |
with gr.Row(): | |
with gr.Column(): | |
mode_selector = gr.Radio(label="Choose Input Mode", choices=["Image", "Video"], value="Image") | |
image_input = gr.Image(type="numpy", label="πΈ Upload Face Image") | |
video_input = gr.Video(label="π½ Upload Face Video", sources=["upload", "webcam"]) | |
submit_btn = gr.Button("π Analyze") | |
with gr.Column(): | |
result_html = gr.HTML(label="π§ͺ Health Report Table") | |
result_image = gr.Image(label="π· Key Frame Snapshot") | |
def route_inputs(mode, image, video): | |
health_card_html, frame_rgb = analyze_face(image) if mode == "Image" else analyze_face(video) | |
return health_card_html, frame_rgb | |
submit_btn.click(fn=route_inputs, inputs=[mode_selector, image_input, video_input], outputs=[result_html, result_image]) | |
demo.launch() | |