Spaces:
Sleeping
Sleeping
File size: 10,414 Bytes
0983def eb3d3f0 9905bc8 70542c8 eb3d3f0 70542c8 eb3d3f0 0983def eb3d3f0 70542c8 9905bc8 39eef5a 71a8976 39eef5a 9905bc8 360e696 9905bc8 70542c8 edb3de6 f04f718 46d6884 f04f718 9905bc8 31ad924 9905bc8 70542c8 7e2c1f5 accfefd 7e2c1f5 accfefd 7e2c1f5 accfefd 70542c8 9e64c66 9905bc8 9e64c66 19e69ba 70542c8 c2d95e3 70542c8 9161fde 70542c8 19e69ba e674980 f04f718 94e0da7 e674980 f04f718 70542c8 e674980 f04f718 94e0da7 46d6884 9161fde f04f718 19e69ba 94e0da7 70542c8 94e0da7 e6d165e 94e0da7 e6d165e c391431 19e69ba 70542c8 19e69ba 70542c8 19e69ba bdf9b37 f8f4a14 10c366b f8f4a14 bdf9b37 19e69ba 9161fde f8f4a14 10c366b c391431 10c366b f8f4a14 19e69ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import gradio as gr
import cv2
import numpy as np
import mediapipe as mp
from sklearn.linear_model import LinearRegression
import random
import base64
import joblib
# Initialize the face mesh model
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refine_landmarks=True, min_detection_confidence=0.5)
# Functions for feature extraction
def extract_features(image, landmarks):
red_channel = image[:, :, 2]
green_channel = image[:, :, 1]
blue_channel = image[:, :, 0]
red_percent = 100 * np.mean(red_channel) / 255
green_percent = 100 * np.mean(green_channel) / 255
blue_percent = 100 * np.mean(blue_channel) / 255
return [red_percent, green_percent, blue_percent]
def train_model(output_range):
X = [[random.uniform(0.2, 0.5), random.uniform(0.05, 0.2), random.uniform(0.05, 0.2),
random.uniform(0.2, 0.5), random.uniform(0.2, 0.5), random.uniform(0.2, 0.5),
random.uniform(0.2, 0.5)] for _ in range(100)]
y = [random.uniform(*output_range) for _ in X]
model = LinearRegression().fit(X, y)
return model
# Load models
hemoglobin_model = joblib.load("hemoglobin_model_from_anemia_dataset.pkl")
spo2_model = joblib.load("spo2_model_simulated.pkl")
hr_model = joblib.load("heart_rate_model.pkl")
models = {
"Hemoglobin": hemoglobin_model,
"WBC Count": train_model((4.0, 11.0)),
"Platelet Count": train_model((150, 450)),
"Iron": train_model((60, 170)),
"Ferritin": train_model((30, 300)),
"TIBC": train_model((250, 400)),
"Bilirubin": train_model((0.3, 1.2)),
"Creatinine": train_model((0.6, 1.2)),
"Urea": train_model((7, 20)),
"Sodium": train_model((135, 145)),
"Potassium": train_model((3.5, 5.1)),
"TSH": train_model((0.4, 4.0)),
"Cortisol": train_model((5, 25)),
"FBS": train_model((70, 110)),
"HbA1c": train_model((4.0, 5.7)),
"Albumin": train_model((3.5, 5.5)),
"BP Systolic": train_model((90, 120)),
"BP Diastolic": train_model((60, 80)),
"Temperature": train_model((97, 99))
}
# Helper function for risk level color coding
def get_risk_color(value, normal_range):
low, high = normal_range
if value < low:
return ("Low", "π»", "#FFCCCC")
elif value > high:
return ("High", "πΊ", "#FFE680")
else:
return ("Normal", "β
", "#CCFFCC")
# Function to build table for test results
def build_table(title, rows):
html = (
f'<div style="margin-bottom: 24px;">'
f'<h4 style="margin: 8px 0;">{title}</h4>'
f'<table style="width:100%; border-collapse:collapse;">'
f'<thead><tr style="background:#f0f0f0;"><th style="padding:8px;border:1px solid #ccc;">Test</th><th style="padding:8px;border:1px solid #ccc;">Result</th><th style="padding:8px;border:1px solid #ccc;">Expected Range</th><th style="padding:8px;border:1px solid #ccc;">Level</th></tr></thead><tbody>'
)
for label, value, ref in rows:
level, icon, bg = get_risk_color(value, ref)
html += f'<tr style="background:{bg};"><td style="padding:6px;border:1px solid #ccc;">{label}</td><td style="padding:6px;border:1px solid #ccc;">{value:.2f}</td><td style="padding:6px;border:1px solid #ccc;">{ref[0]} β {ref[1]}</td><td style="padding:6px;border:1px solid #ccc;">{icon} {level}</td></tr>'
html += '</tbody></table></div>'
return html
# Build health card layout
def build_health_card(profile_image, test_results, summary):
html = f"""
<div style="font-family: Arial, sans-serif; max-width: 600px; margin: 20px auto; border-radius: 12px; background-color: #f3f8fc; box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); padding: 20px; color: #333;">
<div style="display: flex; align-items: center; margin-bottom: 20px;">
<img src="data:image/png;base64,{profile_image}" alt="Profile" style="width: 80px; height: 80px; border-radius: 50%; margin-right: 15px;">
<div>
<h2 style="margin: 0; font-size: 24px;">Health Card</h2>
<p style="margin: 5px 0; color: #777;">Lab Test Results</p>
</div>
</div>
<div style="font-size: 16px; margin-bottom: 20px;">
{test_results['Hematology']} <!-- Single reference to Hematology -->
{test_results['Iron Panel']}
{test_results['Liver & Kidney']}
{test_results['Electrolytes']}
{test_results['Vitals']}
</div>
<div style="background-color: #ffffff; padding: 15px; border-radius: 8px; box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);">
<h4 style="margin: 0;">π Summary for You</h4>
<ul style="margin-top: 10px; color: #555;">
{summary}
</ul>
</div>
<div style="margin-top: 20px; text-align: center;">
<h4>π Book a Lab Test</h4>
<p style="color: #777;">Prefer confirmation? Find certified labs near you.</p>
<button style="padding: 10px 20px; background-color: #007BFF; color: white; border: none; border-radius: 5px; cursor: pointer;">
Find Labs Near Me
</button>
</div>
</div>
"""
return html
# Analyze face and return results
def analyze_face(image):
if image is None:
return "<div style='color:red;'>β οΈ Error: No image provided.</div>", None
frame_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
result = face_mesh.process(frame_rgb)
if not result.multi_face_landmarks:
return "<div style='color:red;'>β οΈ Error: Face not detected.</div>", None
landmarks = result.multi_face_landmarks[0].landmark
features = extract_features(frame_rgb, landmarks)
test_values = {}
r2_scores = {}
for label in models:
if label == "Hemoglobin":
prediction = models[label].predict([features])[0]
test_values[label] = prediction
r2_scores[label] = 0.385
else:
value = models[label].predict([[random.uniform(0.2, 0.5) for _ in range(7)]])[0]
test_values[label] = value
r2_scores[label] = 0.0 # simulate other 7D inputs
gray = cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2GRAY)
green_std = np.std(frame_rgb[:, :, 1]) / 255
brightness_std = np.std(gray) / 255
tone_index = np.mean(frame_rgb[100:150, 100:150]) / 255 if frame_rgb[100:150, 100:150].size else 0.5
hr_features = [brightness_std, green_std, tone_index]
heart_rate = float(np.clip(hr_model.predict([hr_features])[0], 60, 100))
skin_patch = frame_rgb[100:150, 100:150]
skin_tone_index = np.mean(skin_patch) / 255 if skin_patch.size else 0.5
brightness_variation = np.std(cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2GRAY)) / 255
spo2_features = [heart_rate, brightness_variation, skin_tone_index]
spo2 = spo2_model.predict([spo2_features])[0]
rr = int(12 + abs(heart_rate % 5 - 2))
# Prepare the test results
test_results = {
"Hematology": build_table("π©Έ Hematology", [("Hemoglobin", test_values["Hemoglobin"], (13.5, 17.5)),
("WBC Count", test_values["WBC Count"], (4.0, 11.0)),
("Platelet Count", test_values["Platelet Count"], (150, 450))]),
"Iron Panel": build_table("𧬠Iron Panel", [("Iron", test_values["Iron"], (60, 170)),
("Ferritin", test_values["Ferritin"], (30, 300)),
("TIBC", test_values["TIBC"], (250, 400))]),
"Liver & Kidney": build_table("𧬠Liver & Kidney", [("Bilirubin", test_values["Bilirubin"], (0.3, 1.2)),
("Creatinine", test_values["Creatinine"], (0.6, 1.2)),
("Urea", test_values["Urea"], (7, 20))]),
"Electrolytes": build_table("π§ͺ Electrolytes", [("Sodium", test_values["Sodium"], (135, 145)),
("Potassium", test_values["Potassium"], (3.5, 5.1))]),
"Vitals": build_table("β€οΈ Vitals", [("SpO2", spo2, (95, 100)),
("Heart Rate", heart_rate, (60, 100)),
("Respiratory Rate", rr, (12, 20)),
("Temperature", test_values["Temperature"], (97, 99)),
("BP Systolic", test_values["BP Systolic"], (90, 120)),
("BP Diastolic", test_values["BP Diastolic"], (60, 80))])
}
summary = "<ul><li>Your hemoglobin is a bit low β this could mean mild anemia.</li><li>Low iron storage detected β consider an iron profile test.</li><li>Elevated bilirubin β possible jaundice. Recommend LFT.</li><li>High HbA1c β prediabetes indication. Recommend glucose check.</li><li>Low SpOβ β suggest retesting with a pulse oximeter.</li></ul>"
# Convert frame_rgb to base64 for profile picture (this is temporary placeholder)
_, buffer = cv2.imencode('.png', frame_rgb)
profile_image_base64 = base64.b64encode(buffer).decode('utf-8')
# Generate Health Card HTML
health_card_html = build_health_card(profile_image_base64, test_results, summary)
return health_card_html, frame_rgb
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("""# π§ Face-Based Lab Test AI Report (Video Mode)""")
with gr.Row():
with gr.Column():
mode_selector = gr.Radio(label="Choose Input Mode", choices=["Image", "Video"], value="Image")
image_input = gr.Image(type="numpy", label="πΈ Upload Face Image")
video_input = gr.Video(label="π½ Upload Face Video", sources=["upload", "webcam"])
submit_btn = gr.Button("π Analyze")
with gr.Column():
result_html = gr.HTML(label="π§ͺ Health Report Table")
result_image = gr.Image(label="π· Key Frame Snapshot")
def route_inputs(mode, image, video):
health_card_html, frame_rgb = analyze_face(image) if mode == "Image" else analyze_face(video)
return health_card_html, frame_rgb
submit_btn.click(fn=route_inputs, inputs=[mode_selector, image_input, video_input], outputs=[result_html, result_image])
demo.launch()
|