Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from PIL import Image | |
# We'll use the smallest available pipeline | |
from diffusers import DiffusionPipeline | |
# Load model (cached after first run) | |
def load_model(): | |
return DiffusionPipeline.from_pretrained( | |
"OFA-Sys/small-stable-diffusion-v0", | |
torch_dtype=torch.float16, | |
safety_checker=None, | |
use_safetensors=True | |
).to("cpu") | |
def generate_character(description, seed=42): | |
try: | |
pipe = load_model() | |
torch.manual_seed(seed) | |
with torch.inference_mode(): | |
image = pipe( | |
prompt=f"pixel art character, {description}", | |
num_inference_steps=15, | |
guidance_scale=7.0, | |
width=256, | |
height=256 | |
).images[0] | |
return image | |
except Exception as e: | |
return f"Error: {str(e)}\nTry a simpler description." | |
with gr.Blocks(title="Lightweight Character Generator") as demo: | |
gr.Markdown("# π¨ Tiny Character Creator") | |
with gr.Row(): | |
desc = gr.Textbox( | |
label="Describe your character", | |
placeholder="e.g., 'green alien with one eye'", | |
max_lines=2 | |
) | |
generate_btn = gr.Button("Generate Character") | |
output = gr.Image(label="Your Character", shape=(256, 256)) | |
generate_btn.click( | |
generate_character, | |
inputs=desc, | |
outputs=output | |
) | |
demo.launch(debug=False) |