RamaManna's picture
Update app.py
0db4d23 verified
raw
history blame
1.49 kB
import gradio as gr
import torch
from PIL import Image
# We'll use the smallest available pipeline
from diffusers import DiffusionPipeline
# Load model (cached after first run)
@gr.cache()
def load_model():
return DiffusionPipeline.from_pretrained(
"OFA-Sys/small-stable-diffusion-v0",
torch_dtype=torch.float16,
safety_checker=None,
use_safetensors=True
).to("cpu")
def generate_character(description, seed=42):
try:
pipe = load_model()
torch.manual_seed(seed)
with torch.inference_mode():
image = pipe(
prompt=f"pixel art character, {description}",
num_inference_steps=15,
guidance_scale=7.0,
width=256,
height=256
).images[0]
return image
except Exception as e:
return f"Error: {str(e)}\nTry a simpler description."
with gr.Blocks(title="Lightweight Character Generator") as demo:
gr.Markdown("# 🎨 Tiny Character Creator")
with gr.Row():
desc = gr.Textbox(
label="Describe your character",
placeholder="e.g., 'green alien with one eye'",
max_lines=2
)
generate_btn = gr.Button("Generate Character")
output = gr.Image(label="Your Character", shape=(256, 256))
generate_btn.click(
generate_character,
inputs=desc,
outputs=output
)
demo.launch(debug=False)