Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,95 +1,55 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from diffusers import StableDiffusionPipeline
|
| 4 |
from PIL import Image
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
|
| 9 |
-
# Load model (
|
| 10 |
@gr.cache()
|
| 11 |
def load_model():
|
| 12 |
-
return
|
| 13 |
-
|
| 14 |
torch_dtype=torch.float16,
|
| 15 |
-
safety_checker=None
|
|
|
|
| 16 |
).to("cpu")
|
| 17 |
|
| 18 |
def generate_character(description, seed=42):
|
| 19 |
try:
|
| 20 |
pipe = load_model()
|
| 21 |
|
| 22 |
-
# Reduce memory usage
|
| 23 |
torch.manual_seed(seed)
|
| 24 |
with torch.inference_mode():
|
| 25 |
image = pipe(
|
| 26 |
prompt=f"pixel art character, {description}",
|
| 27 |
-
num_inference_steps=15,
|
| 28 |
guidance_scale=7.0,
|
| 29 |
-
width=256,
|
| 30 |
height=256
|
| 31 |
).images[0]
|
| 32 |
|
| 33 |
return image
|
| 34 |
except Exception as e:
|
| 35 |
-
return f"Error: {str(e)}\nTry a simpler description
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
images = []
|
| 40 |
-
for i in range(frames):
|
| 41 |
-
img = generate_character(description, seed=i)
|
| 42 |
-
if isinstance(img, str): # If error returned
|
| 43 |
-
return img
|
| 44 |
-
images.append(img)
|
| 45 |
-
|
| 46 |
-
# Create simple animation (GIF)
|
| 47 |
-
images[0].save(
|
| 48 |
-
"animation.gif",
|
| 49 |
-
save_all=True,
|
| 50 |
-
append_images=images[1:],
|
| 51 |
-
duration=500,
|
| 52 |
-
loop=0
|
| 53 |
-
)
|
| 54 |
-
return "animation.gif"
|
| 55 |
-
|
| 56 |
-
# Minimal interface
|
| 57 |
-
with gr.Blocks(title="Tiny Character Animator") as demo:
|
| 58 |
-
gr.Markdown("""
|
| 59 |
-
# 🎮 Tiny Character Animator
|
| 60 |
-
*Free-tier optimized for Hugging Face Spaces*
|
| 61 |
-
""")
|
| 62 |
|
| 63 |
with gr.Row():
|
| 64 |
desc = gr.Textbox(
|
| 65 |
label="Describe your character",
|
| 66 |
-
placeholder="e.g., '
|
| 67 |
max_lines=2
|
| 68 |
)
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
btn_animate = gr.Button("Generate Animation", variant="primary")
|
| 73 |
|
| 74 |
-
|
| 75 |
-
output_still = gr.Image(label="Character", shape=(256, 256))
|
| 76 |
-
output_anim = gr.Image(label="Animation", format="gif", visible=False)
|
| 77 |
-
|
| 78 |
-
# Button actions
|
| 79 |
-
btn_still.click(
|
| 80 |
generate_character,
|
| 81 |
inputs=desc,
|
| 82 |
-
outputs=
|
| 83 |
-
)
|
| 84 |
-
|
| 85 |
-
btn_animate.click(
|
| 86 |
-
lambda: (gr.Image(visible=False), gr.Image(visible=True)), # Toggle visibility
|
| 87 |
-
None,
|
| 88 |
-
[output_still, output_anim]
|
| 89 |
-
).then(
|
| 90 |
-
generate_animation,
|
| 91 |
-
inputs=desc,
|
| 92 |
-
outputs=output_anim
|
| 93 |
)
|
| 94 |
|
| 95 |
demo.launch(debug=False)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
|
|
|
| 3 |
from PIL import Image
|
| 4 |
|
| 5 |
+
# We'll use the smallest available pipeline
|
| 6 |
+
from diffusers import DiffusionPipeline
|
| 7 |
|
| 8 |
+
# Load model (cached after first run)
|
| 9 |
@gr.cache()
|
| 10 |
def load_model():
|
| 11 |
+
return DiffusionPipeline.from_pretrained(
|
| 12 |
+
"OFA-Sys/small-stable-diffusion-v0",
|
| 13 |
torch_dtype=torch.float16,
|
| 14 |
+
safety_checker=None,
|
| 15 |
+
use_safetensors=True
|
| 16 |
).to("cpu")
|
| 17 |
|
| 18 |
def generate_character(description, seed=42):
|
| 19 |
try:
|
| 20 |
pipe = load_model()
|
| 21 |
|
|
|
|
| 22 |
torch.manual_seed(seed)
|
| 23 |
with torch.inference_mode():
|
| 24 |
image = pipe(
|
| 25 |
prompt=f"pixel art character, {description}",
|
| 26 |
+
num_inference_steps=15,
|
| 27 |
guidance_scale=7.0,
|
| 28 |
+
width=256,
|
| 29 |
height=256
|
| 30 |
).images[0]
|
| 31 |
|
| 32 |
return image
|
| 33 |
except Exception as e:
|
| 34 |
+
return f"Error: {str(e)}\nTry a simpler description."
|
| 35 |
|
| 36 |
+
with gr.Blocks(title="Lightweight Character Generator") as demo:
|
| 37 |
+
gr.Markdown("# 🎨 Tiny Character Creator")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
with gr.Row():
|
| 40 |
desc = gr.Textbox(
|
| 41 |
label="Describe your character",
|
| 42 |
+
placeholder="e.g., 'green alien with one eye'",
|
| 43 |
max_lines=2
|
| 44 |
)
|
| 45 |
|
| 46 |
+
generate_btn = gr.Button("Generate Character")
|
| 47 |
+
output = gr.Image(label="Your Character", shape=(256, 256))
|
|
|
|
| 48 |
|
| 49 |
+
generate_btn.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
generate_character,
|
| 51 |
inputs=desc,
|
| 52 |
+
outputs=output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
)
|
| 54 |
|
| 55 |
demo.launch(debug=False)
|