RamAnanth1's picture
Switch to HF based whisper-large-v2 model
1f93035
raw
history blame
5.96 kB
import gradio as gr
import torch
import whisper
from transformers import pipeline
### β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
title="Whisper to Emotion"
### β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
whisper_model = pipeline(
task="automatic-speech-recognition",
model="openai/whisper-large-v2",
chunk_length_s=30,
device=device,
)
all_special_ids = whisper_model.tokenizer.all_special_ids
transcribe_token_id = all_special_ids[-5]
translate_token_id = all_special_ids[-6]
emotion_classifier = pipeline("text-classification",model='bhadresh-savani/distilbert-base-uncased-emotion')
def translate_and_classify(audio):
task = "Transcribe in Spoken Language"
whisper_model.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="Transcribe in Spoken Language" else translate_token_id]]
text = whisper_model(audio)["text"]
emotion = emotion_classifier(text)
detected_emotion = emotion[0]["label"]
print("Detected Emotion: ", detected_emotion)
return text, detected_emotion
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
color: white;
border-color: black;
background: black;
}
input[type='range'] {
accent-color: black;
}
.dark input[type='range'] {
accent-color: #dfdfdf;
}
.container {
max-width: 730px;
margin: auto;
padding-top: 1.5rem;
}
#gallery {
min-height: 22rem;
margin-bottom: 15px;
margin-left: auto;
margin-right: auto;
border-bottom-right-radius: .5rem !important;
border-bottom-left-radius: .5rem !important;
}
#gallery>div>.h-full {
min-height: 20rem;
}
.details:hover {
text-decoration: underline;
}
.gr-button {
white-space: nowrap;
}
.gr-button:focus {
border-color: rgb(147 197 253 / var(--tw-border-opacity));
outline: none;
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
--tw-border-opacity: 1;
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
--tw-ring-opacity: .5;
}
#advanced-btn {
font-size: .7rem !important;
line-height: 19px;
margin-top: 12px;
margin-bottom: 12px;
padding: 2px 8px;
border-radius: 14px !important;
}
#advanced-options {
display: none;
margin-bottom: 20px;
}
.footer {
margin-bottom: 45px;
margin-top: 35px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
"""
with gr.Blocks(css = css) as demo:
gr.Markdown("""
## Emotion Detection From Speech with Whisper
""")
gr.HTML('''
<p style="margin-bottom: 10px; font-size: 94%">
Whisper is a general-purpose speech recognition model released by OpenAI that can perform multilingual speech recognition as well as speech translation and language identification. Combined with an emotion detection model,this allows for detecting emotion directly from speech in multiple languages and can potentially be used to analyze sentiment from customer calls. It could also be used to transcribe and detect different emotions to enable a data-driven analysis for psychotherapy.
</p>
''')
with gr.Column():
#gr.Markdown(""" ### Record audio """)
with gr.Tab("Record Audio"):
audio_input_r = gr.Audio(label = 'Record Audio Input',source="microphone",type="filepath")
transcribe_audio_r = gr.Button('Transcribe')
with gr.Tab("Upload Audio as File"):
audio_input_u = gr.Audio(label = 'Upload Audio',source="upload",type="filepath")
transcribe_audio_u = gr.Button('Transcribe')
with gr.Row():
transcript_output = gr.Textbox(label="Transcription in the language you spoke", lines = 3)
emotion_output = gr.Textbox(label = "Detected Emotion")
transcribe_audio_r.click(translate_and_classify, inputs = audio_input_r, outputs = [transcript_output,emotion_output])
transcribe_audio_u.click(translate_and_classify, inputs = audio_input_u, outputs = [transcript_output,emotion_output])
gr.HTML('''
<div class="footer">
<p>Whisper Model by <a href="https://github.com/openai/whisper" style="text-decoration: underline;" target="_blank">OpenAI</a> -
<a href="https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion" style="text-decoration: underline;" target="_blank">Emotion Detection Model</a>
</p>
</div>
''')
gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=RamAnanth1.whisper_to_emotion)")
demo.launch()