TestLLM / litellm /utils.py
Raju2024's picture
Upload 1072 files
e3278e4 verified
raw
history blame
245 kB
# +-----------------------------------------------+
# | |
# | Give Feedback / Get Help |
# | https://github.com/BerriAI/litellm/issues/new |
# | |
# +-----------------------------------------------+
#
# Thank you users! We ❤️ you! - Krrish & Ishaan
import ast
import asyncio
import base64
import binascii
import copy
import datetime
import hashlib
import inspect
import io
import itertools
import json
import logging
import os
import random # type: ignore
import re
import struct
import subprocess
# What is this?
## Generic utils.py file. Problem-specific utils (e.g. 'cost calculation), should all be in `litellm_core_utils/`.
import sys
import textwrap
import threading
import time
import traceback
import uuid
from dataclasses import dataclass, field
from functools import lru_cache, wraps
from importlib import resources
from inspect import iscoroutine
from os.path import abspath, dirname, join
import aiohttp
import dotenv
import httpx
import openai
import tiktoken
from httpx import Proxy
from httpx._utils import get_environment_proxies
from openai.lib import _parsing, _pydantic
from openai.types.chat.completion_create_params import ResponseFormat
from pydantic import BaseModel
from tiktoken import Encoding
from tokenizers import Tokenizer
import litellm
import litellm._service_logger # for storing API inputs, outputs, and metadata
import litellm.litellm_core_utils
import litellm.litellm_core_utils.audio_utils.utils
import litellm.litellm_core_utils.json_validation_rule
from litellm.caching._internal_lru_cache import lru_cache_wrapper
from litellm.caching.caching import DualCache
from litellm.caching.caching_handler import CachingHandlerResponse, LLMCachingHandler
from litellm.integrations.custom_logger import CustomLogger
from litellm.litellm_core_utils.core_helpers import (
map_finish_reason,
process_response_headers,
)
from litellm.litellm_core_utils.default_encoding import encoding
from litellm.litellm_core_utils.exception_mapping_utils import (
_get_response_headers,
exception_type,
get_error_message,
)
from litellm.litellm_core_utils.get_litellm_params import (
_get_base_model_from_litellm_call_metadata,
get_litellm_params,
)
from litellm.litellm_core_utils.get_llm_provider_logic import (
_is_non_openai_azure_model,
get_llm_provider,
)
from litellm.litellm_core_utils.get_supported_openai_params import (
get_supported_openai_params,
)
from litellm.litellm_core_utils.llm_request_utils import _ensure_extra_body_is_safe
from litellm.litellm_core_utils.llm_response_utils.convert_dict_to_response import (
LiteLLMResponseObjectHandler,
_handle_invalid_parallel_tool_calls,
convert_to_model_response_object,
convert_to_streaming_response,
convert_to_streaming_response_async,
)
from litellm.litellm_core_utils.llm_response_utils.get_api_base import get_api_base
from litellm.litellm_core_utils.llm_response_utils.get_formatted_prompt import (
get_formatted_prompt,
)
from litellm.litellm_core_utils.llm_response_utils.get_headers import (
get_response_headers,
)
from litellm.litellm_core_utils.llm_response_utils.response_metadata import (
ResponseMetadata,
)
from litellm.litellm_core_utils.redact_messages import (
LiteLLMLoggingObject,
redact_message_input_output_from_logging,
)
from litellm.litellm_core_utils.rules import Rules
from litellm.litellm_core_utils.streaming_handler import CustomStreamWrapper
from litellm.litellm_core_utils.token_counter import (
calculate_img_tokens,
get_modified_max_tokens,
)
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
from litellm.router_utils.get_retry_from_policy import (
get_num_retries_from_retry_policy,
reset_retry_policy,
)
from litellm.secret_managers.main import get_secret
from litellm.types.llms.anthropic import ANTHROPIC_API_ONLY_HEADERS
from litellm.types.llms.openai import (
AllMessageValues,
AllPromptValues,
ChatCompletionAssistantToolCall,
ChatCompletionNamedToolChoiceParam,
ChatCompletionToolParam,
ChatCompletionToolParamFunctionChunk,
OpenAITextCompletionUserMessage,
)
from litellm.types.rerank import RerankResponse
from litellm.types.utils import FileTypes # type: ignore
from litellm.types.utils import (
OPENAI_RESPONSE_HEADERS,
CallTypes,
ChatCompletionDeltaToolCall,
ChatCompletionMessageToolCall,
Choices,
CostPerToken,
CustomHuggingfaceTokenizer,
Delta,
Embedding,
EmbeddingResponse,
Function,
ImageResponse,
LlmProviders,
LlmProvidersSet,
Message,
ModelInfo,
ModelInfoBase,
ModelResponse,
ModelResponseStream,
ProviderField,
ProviderSpecificModelInfo,
SelectTokenizerResponse,
StreamingChoices,
TextChoices,
TextCompletionResponse,
TranscriptionResponse,
Usage,
all_litellm_params,
)
with resources.open_text(
"litellm.litellm_core_utils.tokenizers", "anthropic_tokenizer.json"
) as f:
json_data = json.load(f)
# Convert to str (if necessary)
claude_json_str = json.dumps(json_data)
import importlib.metadata
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
Iterable,
List,
Literal,
Optional,
Tuple,
Type,
Union,
cast,
get_args,
)
from openai import OpenAIError as OriginalError
from litellm.litellm_core_utils.thread_pool_executor import executor
from litellm.llms.base_llm.audio_transcription.transformation import (
BaseAudioTranscriptionConfig,
)
from litellm.llms.base_llm.base_utils import (
BaseLLMModelInfo,
type_to_response_format_param,
)
from litellm.llms.base_llm.chat.transformation import BaseConfig
from litellm.llms.base_llm.completion.transformation import BaseTextCompletionConfig
from litellm.llms.base_llm.embedding.transformation import BaseEmbeddingConfig
from litellm.llms.base_llm.image_variations.transformation import (
BaseImageVariationConfig,
)
from litellm.llms.base_llm.rerank.transformation import BaseRerankConfig
from ._logging import _is_debugging_on, verbose_logger
from .caching.caching import (
Cache,
QdrantSemanticCache,
RedisCache,
RedisSemanticCache,
S3Cache,
)
from .exceptions import (
APIConnectionError,
APIError,
AuthenticationError,
BadRequestError,
BudgetExceededError,
ContentPolicyViolationError,
ContextWindowExceededError,
NotFoundError,
OpenAIError,
PermissionDeniedError,
RateLimitError,
ServiceUnavailableError,
Timeout,
UnprocessableEntityError,
UnsupportedParamsError,
)
from .proxy._types import AllowedModelRegion, KeyManagementSystem
from .types.llms.openai import (
ChatCompletionDeltaToolCallChunk,
ChatCompletionToolCallChunk,
ChatCompletionToolCallFunctionChunk,
)
from .types.router import LiteLLM_Params
####### ENVIRONMENT VARIABLES ####################
# Adjust to your specific application needs / system capabilities.
sentry_sdk_instance = None
capture_exception = None
add_breadcrumb = None
posthog = None
slack_app = None
alerts_channel = None
heliconeLogger = None
athinaLogger = None
promptLayerLogger = None
langsmithLogger = None
logfireLogger = None
weightsBiasesLogger = None
customLogger = None
langFuseLogger = None
openMeterLogger = None
lagoLogger = None
dataDogLogger = None
prometheusLogger = None
dynamoLogger = None
s3Logger = None
genericAPILogger = None
greenscaleLogger = None
lunaryLogger = None
aispendLogger = None
supabaseClient = None
callback_list: Optional[List[str]] = []
user_logger_fn = None
additional_details: Optional[Dict[str, str]] = {}
local_cache: Optional[Dict[str, str]] = {}
last_fetched_at = None
last_fetched_at_keys = None
######## Model Response #########################
# All liteLLM Model responses will be in this format, Follows the OpenAI Format
# https://docs.litellm.ai/docs/completion/output
# {
# 'choices': [
# {
# 'finish_reason': 'stop',
# 'index': 0,
# 'message': {
# 'role': 'assistant',
# 'content': " I'm doing well, thank you for asking. I am Claude, an AI assistant created by Anthropic."
# }
# }
# ],
# 'created': 1691429984.3852863,
# 'model': 'claude-instant-1',
# 'usage': {'prompt_tokens': 18, 'completion_tokens': 23, 'total_tokens': 41}
# }
############################################################
def print_verbose(
print_statement,
logger_only: bool = False,
log_level: Literal["DEBUG", "INFO", "ERROR"] = "DEBUG",
):
try:
if log_level == "DEBUG":
verbose_logger.debug(print_statement)
elif log_level == "INFO":
verbose_logger.info(print_statement)
elif log_level == "ERROR":
verbose_logger.error(print_statement)
if litellm.set_verbose is True and logger_only is False:
print(print_statement) # noqa
except Exception:
pass
####### CLIENT ###################
# make it easy to log if completion/embedding runs succeeded or failed + see what happened | Non-Blocking
def custom_llm_setup():
"""
Add custom_llm provider to provider list
"""
for custom_llm in litellm.custom_provider_map:
if custom_llm["provider"] not in litellm.provider_list:
litellm.provider_list.append(custom_llm["provider"])
if custom_llm["provider"] not in litellm._custom_providers:
litellm._custom_providers.append(custom_llm["provider"])
def _add_custom_logger_callback_to_specific_event(
callback: str, logging_event: Literal["success", "failure"]
) -> None:
"""
Add a custom logger callback to the specific event
"""
from litellm import _custom_logger_compatible_callbacks_literal
from litellm.litellm_core_utils.litellm_logging import (
_init_custom_logger_compatible_class,
)
if callback not in litellm._known_custom_logger_compatible_callbacks:
verbose_logger.debug(
f"Callback {callback} is not a valid custom logger compatible callback. Known list - {litellm._known_custom_logger_compatible_callbacks}"
)
return
callback_class = _init_custom_logger_compatible_class(
cast(_custom_logger_compatible_callbacks_literal, callback),
internal_usage_cache=None,
llm_router=None,
)
if callback_class:
if (
logging_event == "success"
and _custom_logger_class_exists_in_success_callbacks(callback_class)
is False
):
litellm.logging_callback_manager.add_litellm_success_callback(
callback_class
)
litellm.logging_callback_manager.add_litellm_async_success_callback(
callback_class
)
if callback in litellm.success_callback:
litellm.success_callback.remove(
callback
) # remove the string from the callback list
if callback in litellm._async_success_callback:
litellm._async_success_callback.remove(
callback
) # remove the string from the callback list
elif (
logging_event == "failure"
and _custom_logger_class_exists_in_failure_callbacks(callback_class)
is False
):
litellm.logging_callback_manager.add_litellm_failure_callback(
callback_class
)
litellm.logging_callback_manager.add_litellm_async_failure_callback(
callback_class
)
if callback in litellm.failure_callback:
litellm.failure_callback.remove(
callback
) # remove the string from the callback list
if callback in litellm._async_failure_callback:
litellm._async_failure_callback.remove(
callback
) # remove the string from the callback list
def _custom_logger_class_exists_in_success_callbacks(
callback_class: CustomLogger,
) -> bool:
"""
Returns True if an instance of the custom logger exists in litellm.success_callback or litellm._async_success_callback
e.g if `LangfusePromptManagement` is passed in, it will return True if an instance of `LangfusePromptManagement` exists in litellm.success_callback or litellm._async_success_callback
Prevents double adding a custom logger callback to the litellm callbacks
"""
return any(
isinstance(cb, type(callback_class))
for cb in litellm.success_callback + litellm._async_success_callback
)
def _custom_logger_class_exists_in_failure_callbacks(
callback_class: CustomLogger,
) -> bool:
"""
Returns True if an instance of the custom logger exists in litellm.failure_callback or litellm._async_failure_callback
e.g if `LangfusePromptManagement` is passed in, it will return True if an instance of `LangfusePromptManagement` exists in litellm.failure_callback or litellm._async_failure_callback
Prevents double adding a custom logger callback to the litellm callbacks
"""
return any(
isinstance(cb, type(callback_class))
for cb in litellm.failure_callback + litellm._async_failure_callback
)
def function_setup( # noqa: PLR0915
original_function: str, rules_obj, start_time, *args, **kwargs
): # just run once to check if user wants to send their data anywhere - PostHog/Sentry/Slack/etc.
### NOTICES ###
from litellm import Logging as LiteLLMLogging
from litellm.litellm_core_utils.litellm_logging import set_callbacks
if litellm.set_verbose is True:
verbose_logger.warning(
"`litellm.set_verbose` is deprecated. Please set `os.environ['LITELLM_LOG'] = 'DEBUG'` for debug logs."
)
try:
global callback_list, add_breadcrumb, user_logger_fn, Logging
## CUSTOM LLM SETUP ##
custom_llm_setup()
## LOGGING SETUP
function_id: Optional[str] = kwargs["id"] if "id" in kwargs else None
if len(litellm.callbacks) > 0:
for callback in litellm.callbacks:
# check if callback is a string - e.g. "lago", "openmeter"
if isinstance(callback, str):
callback = litellm.litellm_core_utils.litellm_logging._init_custom_logger_compatible_class( # type: ignore
callback, internal_usage_cache=None, llm_router=None
)
if callback is None or any(
isinstance(cb, type(callback))
for cb in litellm._async_success_callback
): # don't double add a callback
continue
if callback not in litellm.input_callback:
litellm.input_callback.append(callback) # type: ignore
if callback not in litellm.success_callback:
litellm.logging_callback_manager.add_litellm_success_callback(callback) # type: ignore
if callback not in litellm.failure_callback:
litellm.logging_callback_manager.add_litellm_failure_callback(callback) # type: ignore
if callback not in litellm._async_success_callback:
litellm.logging_callback_manager.add_litellm_async_success_callback(callback) # type: ignore
if callback not in litellm._async_failure_callback:
litellm.logging_callback_manager.add_litellm_async_failure_callback(callback) # type: ignore
print_verbose(
f"Initialized litellm callbacks, Async Success Callbacks: {litellm._async_success_callback}"
)
if (
len(litellm.input_callback) > 0
or len(litellm.success_callback) > 0
or len(litellm.failure_callback) > 0
) and len(
callback_list # type: ignore
) == 0: # type: ignore
callback_list = list(
set(
litellm.input_callback # type: ignore
+ litellm.success_callback
+ litellm.failure_callback
)
)
set_callbacks(callback_list=callback_list, function_id=function_id)
## ASYNC CALLBACKS
if len(litellm.input_callback) > 0:
removed_async_items = []
for index, callback in enumerate(litellm.input_callback): # type: ignore
if inspect.iscoroutinefunction(callback):
litellm._async_input_callback.append(callback)
removed_async_items.append(index)
# Pop the async items from input_callback in reverse order to avoid index issues
for index in reversed(removed_async_items):
litellm.input_callback.pop(index)
if len(litellm.success_callback) > 0:
removed_async_items = []
for index, callback in enumerate(litellm.success_callback): # type: ignore
if inspect.iscoroutinefunction(callback):
litellm.logging_callback_manager.add_litellm_async_success_callback(
callback
)
removed_async_items.append(index)
elif callback == "dynamodb" or callback == "openmeter":
# dynamo is an async callback, it's used for the proxy and needs to be async
# we only support async dynamo db logging for acompletion/aembedding since that's used on proxy
litellm.logging_callback_manager.add_litellm_async_success_callback(
callback
)
removed_async_items.append(index)
elif (
callback in litellm._known_custom_logger_compatible_callbacks
and isinstance(callback, str)
):
_add_custom_logger_callback_to_specific_event(callback, "success")
# Pop the async items from success_callback in reverse order to avoid index issues
for index in reversed(removed_async_items):
litellm.success_callback.pop(index)
if len(litellm.failure_callback) > 0:
removed_async_items = []
for index, callback in enumerate(litellm.failure_callback): # type: ignore
if inspect.iscoroutinefunction(callback):
litellm.logging_callback_manager.add_litellm_async_failure_callback(
callback
)
removed_async_items.append(index)
elif (
callback in litellm._known_custom_logger_compatible_callbacks
and isinstance(callback, str)
):
_add_custom_logger_callback_to_specific_event(callback, "failure")
# Pop the async items from failure_callback in reverse order to avoid index issues
for index in reversed(removed_async_items):
litellm.failure_callback.pop(index)
### DYNAMIC CALLBACKS ###
dynamic_success_callbacks: Optional[
List[Union[str, Callable, CustomLogger]]
] = None
dynamic_async_success_callbacks: Optional[
List[Union[str, Callable, CustomLogger]]
] = None
dynamic_failure_callbacks: Optional[
List[Union[str, Callable, CustomLogger]]
] = None
dynamic_async_failure_callbacks: Optional[
List[Union[str, Callable, CustomLogger]]
] = None
if kwargs.get("success_callback", None) is not None and isinstance(
kwargs["success_callback"], list
):
removed_async_items = []
for index, callback in enumerate(kwargs["success_callback"]):
if (
inspect.iscoroutinefunction(callback)
or callback == "dynamodb"
or callback == "s3"
):
if dynamic_async_success_callbacks is not None and isinstance(
dynamic_async_success_callbacks, list
):
dynamic_async_success_callbacks.append(callback)
else:
dynamic_async_success_callbacks = [callback]
removed_async_items.append(index)
# Pop the async items from success_callback in reverse order to avoid index issues
for index in reversed(removed_async_items):
kwargs["success_callback"].pop(index)
dynamic_success_callbacks = kwargs.pop("success_callback")
if kwargs.get("failure_callback", None) is not None and isinstance(
kwargs["failure_callback"], list
):
dynamic_failure_callbacks = kwargs.pop("failure_callback")
if add_breadcrumb:
try:
details_to_log = copy.deepcopy(kwargs)
except Exception:
details_to_log = kwargs
if litellm.turn_off_message_logging:
# make a copy of the _model_Call_details and log it
details_to_log.pop("messages", None)
details_to_log.pop("input", None)
details_to_log.pop("prompt", None)
add_breadcrumb(
category="litellm.llm_call",
message=f"Positional Args: {args}, Keyword Args: {details_to_log}",
level="info",
)
if "logger_fn" in kwargs:
user_logger_fn = kwargs["logger_fn"]
# INIT LOGGER - for user-specified integrations
model = args[0] if len(args) > 0 else kwargs.get("model", None)
call_type = original_function
if (
call_type == CallTypes.completion.value
or call_type == CallTypes.acompletion.value
):
messages = None
if len(args) > 1:
messages = args[1]
elif kwargs.get("messages", None):
messages = kwargs["messages"]
### PRE-CALL RULES ###
if (
isinstance(messages, list)
and len(messages) > 0
and isinstance(messages[0], dict)
and "content" in messages[0]
):
rules_obj.pre_call_rules(
input="".join(
m.get("content", "")
for m in messages
if "content" in m and isinstance(m["content"], str)
),
model=model,
)
elif (
call_type == CallTypes.embedding.value
or call_type == CallTypes.aembedding.value
):
messages = args[1] if len(args) > 1 else kwargs.get("input", None)
elif (
call_type == CallTypes.image_generation.value
or call_type == CallTypes.aimage_generation.value
):
messages = args[0] if len(args) > 0 else kwargs["prompt"]
elif (
call_type == CallTypes.moderation.value
or call_type == CallTypes.amoderation.value
):
messages = args[1] if len(args) > 1 else kwargs["input"]
elif (
call_type == CallTypes.atext_completion.value
or call_type == CallTypes.text_completion.value
):
messages = args[0] if len(args) > 0 else kwargs["prompt"]
elif (
call_type == CallTypes.rerank.value or call_type == CallTypes.arerank.value
):
messages = kwargs.get("query")
elif (
call_type == CallTypes.atranscription.value
or call_type == CallTypes.transcription.value
):
_file_obj: FileTypes = args[1] if len(args) > 1 else kwargs["file"]
file_checksum = (
litellm.litellm_core_utils.audio_utils.utils.get_audio_file_name(
file_obj=_file_obj
)
)
if "metadata" in kwargs:
kwargs["metadata"]["file_checksum"] = file_checksum
else:
kwargs["metadata"] = {"file_checksum": file_checksum}
messages = file_checksum
elif (
call_type == CallTypes.aspeech.value or call_type == CallTypes.speech.value
):
messages = kwargs.get("input", "speech")
else:
messages = "default-message-value"
stream = True if "stream" in kwargs and kwargs["stream"] is True else False
logging_obj = LiteLLMLogging(
model=model,
messages=messages,
stream=stream,
litellm_call_id=kwargs["litellm_call_id"],
litellm_trace_id=kwargs.get("litellm_trace_id"),
function_id=function_id or "",
call_type=call_type,
start_time=start_time,
dynamic_success_callbacks=dynamic_success_callbacks,
dynamic_failure_callbacks=dynamic_failure_callbacks,
dynamic_async_success_callbacks=dynamic_async_success_callbacks,
dynamic_async_failure_callbacks=dynamic_async_failure_callbacks,
kwargs=kwargs,
)
## check if metadata is passed in
litellm_params: Dict[str, Any] = {"api_base": ""}
if "metadata" in kwargs:
litellm_params["metadata"] = kwargs["metadata"]
logging_obj.update_environment_variables(
model=model,
user="",
optional_params={},
litellm_params=litellm_params,
stream_options=kwargs.get("stream_options", None),
)
return logging_obj, kwargs
except Exception as e:
verbose_logger.error(
f"litellm.utils.py::function_setup() - [Non-Blocking] {traceback.format_exc()}; args - {args}; kwargs - {kwargs}"
)
raise e
async def _client_async_logging_helper(
logging_obj: LiteLLMLoggingObject,
result,
start_time,
end_time,
is_completion_with_fallbacks: bool,
):
if (
is_completion_with_fallbacks is False
): # don't log the parent event litellm.completion_with_fallbacks as a 'log_success_event', this will lead to double logging the same call - https://github.com/BerriAI/litellm/issues/7477
print_verbose(
f"Async Wrapper: Completed Call, calling async_success_handler: {logging_obj.async_success_handler}"
)
# check if user does not want this to be logged
asyncio.create_task(
logging_obj.async_success_handler(result, start_time, end_time)
)
logging_obj.handle_sync_success_callbacks_for_async_calls(
result=result,
start_time=start_time,
end_time=end_time,
)
def _get_wrapper_num_retries(
kwargs: Dict[str, Any], exception: Exception
) -> Tuple[Optional[int], Dict[str, Any]]:
"""
Get the number of retries from the kwargs and the retry policy.
Used for the wrapper functions.
"""
num_retries = kwargs.get("num_retries", None)
if num_retries is None:
num_retries = litellm.num_retries
if kwargs.get("retry_policy", None):
retry_policy_num_retries = get_num_retries_from_retry_policy(
exception=exception,
retry_policy=kwargs.get("retry_policy"),
)
kwargs["retry_policy"] = reset_retry_policy()
if retry_policy_num_retries is not None:
num_retries = retry_policy_num_retries
return num_retries, kwargs
def _get_wrapper_timeout(
kwargs: Dict[str, Any], exception: Exception
) -> Optional[Union[float, int, httpx.Timeout]]:
"""
Get the timeout from the kwargs
Used for the wrapper functions.
"""
timeout = cast(
Optional[Union[float, int, httpx.Timeout]], kwargs.get("timeout", None)
)
return timeout
def client(original_function): # noqa: PLR0915
rules_obj = Rules()
def check_coroutine(value) -> bool:
if inspect.iscoroutine(value):
return True
elif inspect.iscoroutinefunction(value):
return True
else:
return False
def post_call_processing(original_response, model, optional_params: Optional[dict]):
try:
if original_response is None:
pass
else:
call_type = original_function.__name__
if (
call_type == CallTypes.completion.value
or call_type == CallTypes.acompletion.value
):
is_coroutine = check_coroutine(original_response)
if is_coroutine is True:
pass
else:
if (
isinstance(original_response, ModelResponse)
and len(original_response.choices) > 0
):
model_response: Optional[str] = original_response.choices[
0
].message.content # type: ignore
if model_response is not None:
### POST-CALL RULES ###
rules_obj.post_call_rules(
input=model_response, model=model
)
### JSON SCHEMA VALIDATION ###
if litellm.enable_json_schema_validation is True:
try:
if (
optional_params is not None
and "response_format" in optional_params
and optional_params["response_format"]
is not None
):
json_response_format: Optional[dict] = None
if (
isinstance(
optional_params["response_format"],
dict,
)
and optional_params[
"response_format"
].get("json_schema")
is not None
):
json_response_format = optional_params[
"response_format"
]
elif _parsing._completions.is_basemodel_type(
optional_params["response_format"] # type: ignore
):
json_response_format = (
type_to_response_format_param(
response_format=optional_params[
"response_format"
]
)
)
if json_response_format is not None:
litellm.litellm_core_utils.json_validation_rule.validate_schema(
schema=json_response_format[
"json_schema"
]["schema"],
response=model_response,
)
except TypeError:
pass
if (
optional_params is not None
and "response_format" in optional_params
and isinstance(
optional_params["response_format"], dict
)
and "type" in optional_params["response_format"]
and optional_params["response_format"]["type"]
== "json_object"
and "response_schema"
in optional_params["response_format"]
and isinstance(
optional_params["response_format"][
"response_schema"
],
dict,
)
and "enforce_validation"
in optional_params["response_format"]
and optional_params["response_format"][
"enforce_validation"
]
is True
):
# schema given, json response expected, and validation enforced
litellm.litellm_core_utils.json_validation_rule.validate_schema(
schema=optional_params["response_format"][
"response_schema"
],
response=model_response,
)
except Exception as e:
raise e
@wraps(original_function)
def wrapper(*args, **kwargs): # noqa: PLR0915
# DO NOT MOVE THIS. It always needs to run first
# Check if this is an async function. If so only execute the async function
call_type = original_function.__name__
if _is_async_request(kwargs):
# [OPTIONAL] CHECK MAX RETRIES / REQUEST
if litellm.num_retries_per_request is not None:
# check if previous_models passed in as ['litellm_params']['metadata]['previous_models']
previous_models = kwargs.get("metadata", {}).get(
"previous_models", None
)
if previous_models is not None:
if litellm.num_retries_per_request <= len(previous_models):
raise Exception("Max retries per request hit!")
# MODEL CALL
result = original_function(*args, **kwargs)
if "stream" in kwargs and kwargs["stream"] is True:
if (
"complete_response" in kwargs
and kwargs["complete_response"] is True
):
chunks = []
for idx, chunk in enumerate(result):
chunks.append(chunk)
return litellm.stream_chunk_builder(
chunks, messages=kwargs.get("messages", None)
)
else:
return result
return result
# Prints Exactly what was passed to litellm function - don't execute any logic here - it should just print
print_args_passed_to_litellm(original_function, args, kwargs)
start_time = datetime.datetime.now()
result = None
logging_obj: Optional[LiteLLMLoggingObject] = kwargs.get(
"litellm_logging_obj", None
)
# only set litellm_call_id if its not in kwargs
if "litellm_call_id" not in kwargs:
kwargs["litellm_call_id"] = str(uuid.uuid4())
model: Optional[str] = args[0] if len(args) > 0 else kwargs.get("model", None)
try:
if logging_obj is None:
logging_obj, kwargs = function_setup(
original_function.__name__, rules_obj, start_time, *args, **kwargs
)
kwargs["litellm_logging_obj"] = logging_obj
_llm_caching_handler: LLMCachingHandler = LLMCachingHandler(
original_function=original_function,
request_kwargs=kwargs,
start_time=start_time,
)
logging_obj._llm_caching_handler = _llm_caching_handler
# CHECK FOR 'os.environ/' in kwargs
for k, v in kwargs.items():
if v is not None and isinstance(v, str) and v.startswith("os.environ/"):
kwargs[k] = litellm.get_secret(v)
# [OPTIONAL] CHECK BUDGET
if litellm.max_budget:
if litellm._current_cost > litellm.max_budget:
raise BudgetExceededError(
current_cost=litellm._current_cost,
max_budget=litellm.max_budget,
)
# [OPTIONAL] CHECK MAX RETRIES / REQUEST
if litellm.num_retries_per_request is not None:
# check if previous_models passed in as ['litellm_params']['metadata]['previous_models']
previous_models = kwargs.get("metadata", {}).get(
"previous_models", None
)
if previous_models is not None:
if litellm.num_retries_per_request <= len(previous_models):
raise Exception("Max retries per request hit!")
# [OPTIONAL] CHECK CACHE
print_verbose(
f"SYNC kwargs[caching]: {kwargs.get('caching', False)}; litellm.cache: {litellm.cache}; kwargs.get('cache')['no-cache']: {kwargs.get('cache', {}).get('no-cache', False)}"
)
# if caching is false or cache["no-cache"]==True, don't run this
if (
(
(
(
kwargs.get("caching", None) is None
and litellm.cache is not None
)
or kwargs.get("caching", False) is True
)
and kwargs.get("cache", {}).get("no-cache", False) is not True
)
and kwargs.get("aembedding", False) is not True
and kwargs.get("atext_completion", False) is not True
and kwargs.get("acompletion", False) is not True
and kwargs.get("aimg_generation", False) is not True
and kwargs.get("atranscription", False) is not True
and kwargs.get("arerank", False) is not True
and kwargs.get("_arealtime", False) is not True
): # allow users to control returning cached responses from the completion function
# checking cache
verbose_logger.debug("INSIDE CHECKING SYNC CACHE")
caching_handler_response: CachingHandlerResponse = (
_llm_caching_handler._sync_get_cache(
model=model or "",
original_function=original_function,
logging_obj=logging_obj,
start_time=start_time,
call_type=call_type,
kwargs=kwargs,
args=args,
)
)
if caching_handler_response.cached_result is not None:
return caching_handler_response.cached_result
# CHECK MAX TOKENS
if (
kwargs.get("max_tokens", None) is not None
and model is not None
and litellm.modify_params
is True # user is okay with params being modified
and (
call_type == CallTypes.acompletion.value
or call_type == CallTypes.completion.value
)
):
try:
base_model = model
if kwargs.get("hf_model_name", None) is not None:
base_model = f"huggingface/{kwargs.get('hf_model_name')}"
messages = None
if len(args) > 1:
messages = args[1]
elif kwargs.get("messages", None):
messages = kwargs["messages"]
user_max_tokens = kwargs.get("max_tokens")
modified_max_tokens = get_modified_max_tokens(
model=model,
base_model=base_model,
messages=messages,
user_max_tokens=user_max_tokens,
buffer_num=None,
buffer_perc=None,
)
kwargs["max_tokens"] = modified_max_tokens
except Exception as e:
print_verbose(f"Error while checking max token limit: {str(e)}")
# MODEL CALL
result = original_function(*args, **kwargs)
end_time = datetime.datetime.now()
if "stream" in kwargs and kwargs["stream"] is True:
if (
"complete_response" in kwargs
and kwargs["complete_response"] is True
):
chunks = []
for idx, chunk in enumerate(result):
chunks.append(chunk)
return litellm.stream_chunk_builder(
chunks, messages=kwargs.get("messages", None)
)
else:
# RETURN RESULT
update_response_metadata(
result=result,
logging_obj=logging_obj,
model=model,
kwargs=kwargs,
start_time=start_time,
end_time=end_time,
)
return result
elif "acompletion" in kwargs and kwargs["acompletion"] is True:
return result
elif "aembedding" in kwargs and kwargs["aembedding"] is True:
return result
elif "aimg_generation" in kwargs and kwargs["aimg_generation"] is True:
return result
elif "atranscription" in kwargs and kwargs["atranscription"] is True:
return result
elif "aspeech" in kwargs and kwargs["aspeech"] is True:
return result
elif asyncio.iscoroutine(result): # bubble up to relevant async function
return result
### POST-CALL RULES ###
post_call_processing(
original_response=result,
model=model or None,
optional_params=kwargs,
)
# [OPTIONAL] ADD TO CACHE
_llm_caching_handler.sync_set_cache(
result=result,
args=args,
kwargs=kwargs,
)
# LOG SUCCESS - handle streaming success logging in the _next_ object, remove `handle_success` once it's deprecated
verbose_logger.info("Wrapper: Completed Call, calling success_handler")
executor.submit(
logging_obj.success_handler,
result,
start_time,
end_time,
)
# RETURN RESULT
update_response_metadata(
result=result,
logging_obj=logging_obj,
model=model,
kwargs=kwargs,
start_time=start_time,
end_time=end_time,
)
return result
except Exception as e:
call_type = original_function.__name__
if call_type == CallTypes.completion.value:
num_retries = (
kwargs.get("num_retries", None) or litellm.num_retries or None
)
if kwargs.get("retry_policy", None):
num_retries = get_num_retries_from_retry_policy(
exception=e,
retry_policy=kwargs.get("retry_policy"),
)
kwargs["retry_policy"] = (
reset_retry_policy()
) # prevent infinite loops
litellm.num_retries = (
None # set retries to None to prevent infinite loops
)
context_window_fallback_dict = kwargs.get(
"context_window_fallback_dict", {}
)
_is_litellm_router_call = "model_group" in kwargs.get(
"metadata", {}
) # check if call from litellm.router/proxy
if (
num_retries and not _is_litellm_router_call
): # only enter this if call is not from litellm router/proxy. router has it's own logic for retrying
if (
isinstance(e, openai.APIError)
or isinstance(e, openai.Timeout)
or isinstance(e, openai.APIConnectionError)
):
kwargs["num_retries"] = num_retries
return litellm.completion_with_retries(*args, **kwargs)
elif (
isinstance(e, litellm.exceptions.ContextWindowExceededError)
and context_window_fallback_dict
and model in context_window_fallback_dict
and not _is_litellm_router_call
):
if len(args) > 0:
args[0] = context_window_fallback_dict[model] # type: ignore
else:
kwargs["model"] = context_window_fallback_dict[model]
return original_function(*args, **kwargs)
traceback_exception = traceback.format_exc()
end_time = datetime.datetime.now()
# LOG FAILURE - handle streaming failure logging in the _next_ object, remove `handle_failure` once it's deprecated
if logging_obj:
logging_obj.failure_handler(
e, traceback_exception, start_time, end_time
) # DO NOT MAKE THREADED - router retry fallback relies on this!
raise e
@wraps(original_function)
async def wrapper_async(*args, **kwargs): # noqa: PLR0915
print_args_passed_to_litellm(original_function, args, kwargs)
start_time = datetime.datetime.now()
result = None
logging_obj: Optional[LiteLLMLoggingObject] = kwargs.get(
"litellm_logging_obj", None
)
_llm_caching_handler: LLMCachingHandler = LLMCachingHandler(
original_function=original_function,
request_kwargs=kwargs,
start_time=start_time,
)
# only set litellm_call_id if its not in kwargs
call_type = original_function.__name__
if "litellm_call_id" not in kwargs:
kwargs["litellm_call_id"] = str(uuid.uuid4())
model: Optional[str] = args[0] if len(args) > 0 else kwargs.get("model", None)
is_completion_with_fallbacks = kwargs.get("fallbacks") is not None
try:
if logging_obj is None:
logging_obj, kwargs = function_setup(
original_function.__name__, rules_obj, start_time, *args, **kwargs
)
kwargs["litellm_logging_obj"] = logging_obj
logging_obj._llm_caching_handler = _llm_caching_handler
# [OPTIONAL] CHECK BUDGET
if litellm.max_budget:
if litellm._current_cost > litellm.max_budget:
raise BudgetExceededError(
current_cost=litellm._current_cost,
max_budget=litellm.max_budget,
)
# [OPTIONAL] CHECK CACHE
print_verbose(
f"ASYNC kwargs[caching]: {kwargs.get('caching', False)}; litellm.cache: {litellm.cache}; kwargs.get('cache'): {kwargs.get('cache', None)}"
)
_caching_handler_response: CachingHandlerResponse = (
await _llm_caching_handler._async_get_cache(
model=model or "",
original_function=original_function,
logging_obj=logging_obj,
start_time=start_time,
call_type=call_type,
kwargs=kwargs,
args=args,
)
)
if (
_caching_handler_response.cached_result is not None
and _caching_handler_response.final_embedding_cached_response is None
):
return _caching_handler_response.cached_result
elif _caching_handler_response.embedding_all_elements_cache_hit is True:
return _caching_handler_response.final_embedding_cached_response
# MODEL CALL
result = await original_function(*args, **kwargs)
end_time = datetime.datetime.now()
if "stream" in kwargs and kwargs["stream"] is True:
if (
"complete_response" in kwargs
and kwargs["complete_response"] is True
):
chunks = []
for idx, chunk in enumerate(result):
chunks.append(chunk)
return litellm.stream_chunk_builder(
chunks, messages=kwargs.get("messages", None)
)
else:
update_response_metadata(
result=result,
logging_obj=logging_obj,
model=model,
kwargs=kwargs,
start_time=start_time,
end_time=end_time,
)
return result
elif call_type == CallTypes.arealtime.value:
return result
### POST-CALL RULES ###
post_call_processing(
original_response=result, model=model, optional_params=kwargs
)
## Add response to cache
await _llm_caching_handler.async_set_cache(
result=result,
original_function=original_function,
kwargs=kwargs,
args=args,
)
# LOG SUCCESS - handle streaming success logging in the _next_ object
asyncio.create_task(
_client_async_logging_helper(
logging_obj=logging_obj,
result=result,
start_time=start_time,
end_time=end_time,
is_completion_with_fallbacks=is_completion_with_fallbacks,
)
)
logging_obj.handle_sync_success_callbacks_for_async_calls(
result=result,
start_time=start_time,
end_time=end_time,
)
# REBUILD EMBEDDING CACHING
if (
isinstance(result, EmbeddingResponse)
and _caching_handler_response.final_embedding_cached_response
is not None
):
return _llm_caching_handler._combine_cached_embedding_response_with_api_result(
_caching_handler_response=_caching_handler_response,
embedding_response=result,
start_time=start_time,
end_time=end_time,
)
update_response_metadata(
result=result,
logging_obj=logging_obj,
model=model,
kwargs=kwargs,
start_time=start_time,
end_time=end_time,
)
return result
except Exception as e:
traceback_exception = traceback.format_exc()
end_time = datetime.datetime.now()
if logging_obj:
try:
logging_obj.failure_handler(
e, traceback_exception, start_time, end_time
) # DO NOT MAKE THREADED - router retry fallback relies on this!
except Exception as e:
raise e
try:
await logging_obj.async_failure_handler(
e, traceback_exception, start_time, end_time
)
except Exception as e:
raise e
call_type = original_function.__name__
num_retries, kwargs = _get_wrapper_num_retries(kwargs=kwargs, exception=e)
if call_type == CallTypes.acompletion.value:
context_window_fallback_dict = kwargs.get(
"context_window_fallback_dict", {}
)
_is_litellm_router_call = "model_group" in kwargs.get(
"metadata", {}
) # check if call from litellm.router/proxy
if (
num_retries and not _is_litellm_router_call
): # only enter this if call is not from litellm router/proxy. router has it's own logic for retrying
try:
litellm.num_retries = (
None # set retries to None to prevent infinite loops
)
kwargs["num_retries"] = num_retries
kwargs["original_function"] = original_function
if isinstance(
e, openai.RateLimitError
): # rate limiting specific error
kwargs["retry_strategy"] = "exponential_backoff_retry"
elif isinstance(e, openai.APIError): # generic api error
kwargs["retry_strategy"] = "constant_retry"
return await litellm.acompletion_with_retries(*args, **kwargs)
except Exception:
pass
elif (
isinstance(e, litellm.exceptions.ContextWindowExceededError)
and context_window_fallback_dict
and model in context_window_fallback_dict
):
if len(args) > 0:
args[0] = context_window_fallback_dict[model] # type: ignore
else:
kwargs["model"] = context_window_fallback_dict[model]
return await original_function(*args, **kwargs)
setattr(
e, "num_retries", num_retries
) ## IMPORTANT: returns the deployment's num_retries to the router
timeout = _get_wrapper_timeout(kwargs=kwargs, exception=e)
setattr(e, "timeout", timeout)
raise e
is_coroutine = inspect.iscoroutinefunction(original_function)
# Return the appropriate wrapper based on the original function type
if is_coroutine:
return wrapper_async
else:
return wrapper
def _is_async_request(
kwargs: Optional[dict],
is_pass_through: bool = False,
) -> bool:
"""
Returns True if the call type is an internal async request.
eg. litellm.acompletion, litellm.aimage_generation, litellm.acreate_batch, litellm._arealtime
Args:
kwargs (dict): The kwargs passed to the litellm function
is_pass_through (bool): Whether the call is a pass-through call. By default all pass through calls are async.
"""
if kwargs is None:
return False
if (
kwargs.get("acompletion", False) is True
or kwargs.get("aembedding", False) is True
or kwargs.get("aimg_generation", False) is True
or kwargs.get("amoderation", False) is True
or kwargs.get("atext_completion", False) is True
or kwargs.get("atranscription", False) is True
or kwargs.get("arerank", False) is True
or kwargs.get("_arealtime", False) is True
or kwargs.get("acreate_batch", False) is True
or kwargs.get("acreate_fine_tuning_job", False) is True
or is_pass_through is True
):
return True
return False
def update_response_metadata(
result: Any,
logging_obj: LiteLLMLoggingObject,
model: Optional[str],
kwargs: dict,
start_time: datetime.datetime,
end_time: datetime.datetime,
) -> None:
"""
Updates response metadata, adds the following:
- response._hidden_params
- response._hidden_params["litellm_overhead_time_ms"]
- response.response_time_ms
"""
if result is None:
return
metadata = ResponseMetadata(result)
metadata.set_hidden_params(logging_obj=logging_obj, model=model, kwargs=kwargs)
metadata.set_timing_metrics(
start_time=start_time, end_time=end_time, logging_obj=logging_obj
)
metadata.apply()
def _select_tokenizer(
model: str, custom_tokenizer: Optional[CustomHuggingfaceTokenizer] = None
):
if custom_tokenizer is not None:
_tokenizer = create_pretrained_tokenizer(
identifier=custom_tokenizer["identifier"],
revision=custom_tokenizer["revision"],
auth_token=custom_tokenizer["auth_token"],
)
return _tokenizer
return _select_tokenizer_helper(model=model)
@lru_cache(maxsize=128)
def _select_tokenizer_helper(model: str) -> SelectTokenizerResponse:
if litellm.disable_hf_tokenizer_download is True:
return _return_openai_tokenizer(model)
try:
result = _return_huggingface_tokenizer(model)
if result is not None:
return result
except Exception as e:
verbose_logger.debug(f"Error selecting tokenizer: {e}")
# default - tiktoken
return _return_openai_tokenizer(model)
def _return_openai_tokenizer(model: str) -> SelectTokenizerResponse:
return {"type": "openai_tokenizer", "tokenizer": encoding}
def _return_huggingface_tokenizer(model: str) -> Optional[SelectTokenizerResponse]:
if model in litellm.cohere_models and "command-r" in model:
# cohere
cohere_tokenizer = Tokenizer.from_pretrained(
"Xenova/c4ai-command-r-v01-tokenizer"
)
return {"type": "huggingface_tokenizer", "tokenizer": cohere_tokenizer}
# anthropic
elif model in litellm.anthropic_models and "claude-3" not in model:
claude_tokenizer = Tokenizer.from_str(claude_json_str)
return {"type": "huggingface_tokenizer", "tokenizer": claude_tokenizer}
# llama2
elif "llama-2" in model.lower() or "replicate" in model.lower():
tokenizer = Tokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
# llama3
elif "llama-3" in model.lower():
tokenizer = Tokenizer.from_pretrained("Xenova/llama-3-tokenizer")
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
else:
return None
def encode(model="", text="", custom_tokenizer: Optional[dict] = None):
"""
Encodes the given text using the specified model.
Args:
model (str): The name of the model to use for tokenization.
custom_tokenizer (Optional[dict]): A custom tokenizer created with the `create_pretrained_tokenizer` or `create_tokenizer` method. Must be a dictionary with a string value for `type` and Tokenizer for `tokenizer`. Default is None.
text (str): The text to be encoded.
Returns:
enc: The encoded text.
"""
tokenizer_json = custom_tokenizer or _select_tokenizer(model=model)
if isinstance(tokenizer_json["tokenizer"], Encoding):
enc = tokenizer_json["tokenizer"].encode(text, disallowed_special=())
else:
enc = tokenizer_json["tokenizer"].encode(text)
return enc
def decode(model="", tokens: List[int] = [], custom_tokenizer: Optional[dict] = None):
tokenizer_json = custom_tokenizer or _select_tokenizer(model=model)
dec = tokenizer_json["tokenizer"].decode(tokens)
return dec
def openai_token_counter( # noqa: PLR0915
messages: Optional[list] = None,
model="gpt-3.5-turbo-0613",
text: Optional[str] = None,
is_tool_call: Optional[bool] = False,
tools: Optional[List[ChatCompletionToolParam]] = None,
tool_choice: Optional[ChatCompletionNamedToolChoiceParam] = None,
count_response_tokens: Optional[
bool
] = False, # Flag passed from litellm.stream_chunk_builder, to indicate counting tokens for LLM Response. We need this because for LLM input we add +3 tokens per message - based on OpenAI's token counter
use_default_image_token_count: Optional[bool] = False,
):
"""
Return the number of tokens used by a list of messages.
Borrowed from https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb.
"""
print_verbose(f"LiteLLM: Utils - Counting tokens for OpenAI model={model}")
try:
if "gpt-4o" in model:
encoding = tiktoken.get_encoding("o200k_base")
else:
encoding = tiktoken.encoding_for_model(model)
except KeyError:
print_verbose("Warning: model not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
if model == "gpt-3.5-turbo-0301":
tokens_per_message = (
4 # every message follows <|start|>{role/name}\n{content}<|end|>\n
)
tokens_per_name = -1 # if there's a name, the role is omitted
elif model in litellm.open_ai_chat_completion_models:
tokens_per_message = 3
tokens_per_name = 1
elif model in litellm.azure_llms:
tokens_per_message = 3
tokens_per_name = 1
else:
raise NotImplementedError(
f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens."""
)
num_tokens = 0
includes_system_message = False
if is_tool_call and text is not None:
# if it's a tool call we assembled 'text' in token_counter()
num_tokens = len(encoding.encode(text, disallowed_special=()))
elif messages is not None:
for message in messages:
num_tokens += tokens_per_message
if message.get("role", None) == "system":
includes_system_message = True
for key, value in message.items():
if isinstance(value, str):
num_tokens += len(encoding.encode(value, disallowed_special=()))
if key == "name":
num_tokens += tokens_per_name
elif isinstance(value, List):
for c in value:
if c["type"] == "text":
text += c["text"]
num_tokens += len(
encoding.encode(c["text"], disallowed_special=())
)
elif c["type"] == "image_url":
if isinstance(c["image_url"], dict):
image_url_dict = c["image_url"]
detail = image_url_dict.get("detail", "auto")
url = image_url_dict.get("url")
num_tokens += calculate_img_tokens(
data=url,
mode=detail,
use_default_image_token_count=use_default_image_token_count
or False,
)
elif isinstance(c["image_url"], str):
image_url_str = c["image_url"]
num_tokens += calculate_img_tokens(
data=image_url_str,
mode="auto",
use_default_image_token_count=use_default_image_token_count
or False,
)
elif text is not None and count_response_tokens is True:
# This is the case where we need to count tokens for a streamed response. We should NOT add +3 tokens per message in this branch
num_tokens = len(encoding.encode(text, disallowed_special=()))
return num_tokens
elif text is not None:
num_tokens = len(encoding.encode(text, disallowed_special=()))
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>
if tools:
num_tokens += len(encoding.encode(_format_function_definitions(tools)))
num_tokens += 9 # Additional tokens for function definition of tools
# If there's a system message and tools are present, subtract four tokens
if tools and includes_system_message:
num_tokens -= 4
# If tool_choice is 'none', add one token.
# If it's an object, add 4 + the number of tokens in the function name.
# If it's undefined or 'auto', don't add anything.
if tool_choice == "none":
num_tokens += 1
elif isinstance(tool_choice, dict):
num_tokens += 7
num_tokens += len(encoding.encode(tool_choice["function"]["name"]))
return num_tokens
def create_pretrained_tokenizer(
identifier: str, revision="main", auth_token: Optional[str] = None
):
"""
Creates a tokenizer from an existing file on a HuggingFace repository to be used with `token_counter`.
Args:
identifier (str): The identifier of a Model on the Hugging Face Hub, that contains a tokenizer.json file
revision (str, defaults to main): A branch or commit id
auth_token (str, optional, defaults to None): An optional auth token used to access private repositories on the Hugging Face Hub
Returns:
dict: A dictionary with the tokenizer and its type.
"""
try:
tokenizer = Tokenizer.from_pretrained(
identifier, revision=revision, auth_token=auth_token # type: ignore
)
except Exception as e:
verbose_logger.error(
f"Error creating pretrained tokenizer: {e}. Defaulting to version without 'auth_token'."
)
tokenizer = Tokenizer.from_pretrained(identifier, revision=revision)
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
def create_tokenizer(json: str):
"""
Creates a tokenizer from a valid JSON string for use with `token_counter`.
Args:
json (str): A valid JSON string representing a previously serialized tokenizer
Returns:
dict: A dictionary with the tokenizer and its type.
"""
tokenizer = Tokenizer.from_str(json)
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
def _format_function_definitions(tools):
"""Formats tool definitions in the format that OpenAI appears to use.
Based on https://github.com/forestwanglin/openai-java/blob/main/jtokkit/src/main/java/xyz/felh/openai/jtokkit/utils/TikTokenUtils.java
"""
lines = []
lines.append("namespace functions {")
lines.append("")
for tool in tools:
function = tool.get("function")
if function_description := function.get("description"):
lines.append(f"// {function_description}")
function_name = function.get("name")
parameters = function.get("parameters", {})
properties = parameters.get("properties")
if properties and properties.keys():
lines.append(f"type {function_name} = (_: {{")
lines.append(_format_object_parameters(parameters, 0))
lines.append("}) => any;")
else:
lines.append(f"type {function_name} = () => any;")
lines.append("")
lines.append("} // namespace functions")
return "\n".join(lines)
def _format_object_parameters(parameters, indent):
properties = parameters.get("properties")
if not properties:
return ""
required_params = parameters.get("required", [])
lines = []
for key, props in properties.items():
description = props.get("description")
if description:
lines.append(f"// {description}")
question = "?"
if required_params and key in required_params:
question = ""
lines.append(f"{key}{question}: {_format_type(props, indent)},")
return "\n".join([" " * max(0, indent) + line for line in lines])
def _format_type(props, indent):
type = props.get("type")
if type == "string":
if "enum" in props:
return " | ".join([f'"{item}"' for item in props["enum"]])
return "string"
elif type == "array":
# items is required, OpenAI throws an error if it's missing
return f"{_format_type(props['items'], indent)}[]"
elif type == "object":
return f"{{\n{_format_object_parameters(props, indent + 2)}\n}}"
elif type in ["integer", "number"]:
if "enum" in props:
return " | ".join([f'"{item}"' for item in props["enum"]])
return "number"
elif type == "boolean":
return "boolean"
elif type == "null":
return "null"
else:
# This is a guess, as an empty string doesn't yield the expected token count
return "any"
def token_counter(
model="",
custom_tokenizer: Optional[Union[dict, SelectTokenizerResponse]] = None,
text: Optional[Union[str, List[str]]] = None,
messages: Optional[List] = None,
count_response_tokens: Optional[bool] = False,
tools: Optional[List[ChatCompletionToolParam]] = None,
tool_choice: Optional[ChatCompletionNamedToolChoiceParam] = None,
use_default_image_token_count: Optional[bool] = False,
) -> int:
"""
Count the number of tokens in a given text using a specified model.
Args:
model (str): The name of the model to use for tokenization. Default is an empty string.
custom_tokenizer (Optional[dict]): A custom tokenizer created with the `create_pretrained_tokenizer` or `create_tokenizer` method. Must be a dictionary with a string value for `type` and Tokenizer for `tokenizer`. Default is None.
text (str): The raw text string to be passed to the model. Default is None.
messages (Optional[List[Dict[str, str]]]): Alternative to passing in text. A list of dictionaries representing messages with "role" and "content" keys. Default is None.
Returns:
int: The number of tokens in the text.
"""
# use tiktoken, anthropic, cohere, llama2, or llama3's tokenizer depending on the model
is_tool_call = False
num_tokens = 0
if text is None:
if messages is not None:
print_verbose(f"token_counter messages received: {messages}")
text = ""
for message in messages:
if message.get("content", None) is not None:
content = message.get("content")
if isinstance(content, str):
text += message["content"]
elif isinstance(content, List):
for c in content:
if c["type"] == "text":
text += c["text"]
elif c["type"] == "image_url":
if isinstance(c["image_url"], dict):
image_url_dict = c["image_url"]
detail = image_url_dict.get("detail", "auto")
url = image_url_dict.get("url")
num_tokens += calculate_img_tokens(
data=url,
mode=detail,
use_default_image_token_count=use_default_image_token_count
or False,
)
elif isinstance(c["image_url"], str):
image_url_str = c["image_url"]
num_tokens += calculate_img_tokens(
data=image_url_str,
mode="auto",
use_default_image_token_count=use_default_image_token_count
or False,
)
if message.get("tool_calls"):
is_tool_call = True
for tool_call in message["tool_calls"]:
if "function" in tool_call:
function_arguments = tool_call["function"]["arguments"]
text += function_arguments
else:
raise ValueError("text and messages cannot both be None")
elif isinstance(text, List):
text = "".join(t for t in text if isinstance(t, str))
elif isinstance(text, str):
count_response_tokens = True # user just trying to count tokens for a text. don't add the chat_ml +3 tokens to this
if model is not None or custom_tokenizer is not None:
tokenizer_json = custom_tokenizer or _select_tokenizer(model=model)
if tokenizer_json["type"] == "huggingface_tokenizer":
enc = tokenizer_json["tokenizer"].encode(text)
num_tokens = len(enc.ids)
elif tokenizer_json["type"] == "openai_tokenizer":
if (
model in litellm.open_ai_chat_completion_models
or model in litellm.azure_llms
):
if model in litellm.azure_llms:
# azure llms use gpt-35-turbo instead of gpt-3.5-turbo 🙃
model = model.replace("-35", "-3.5")
print_verbose(
f"Token Counter - using OpenAI token counter, for model={model}"
)
num_tokens = openai_token_counter(
text=text, # type: ignore
model=model,
messages=messages,
is_tool_call=is_tool_call,
count_response_tokens=count_response_tokens,
tools=tools,
tool_choice=tool_choice,
use_default_image_token_count=use_default_image_token_count
or False,
)
else:
print_verbose(
f"Token Counter - using generic token counter, for model={model}"
)
num_tokens = openai_token_counter(
text=text, # type: ignore
model="gpt-3.5-turbo",
messages=messages,
is_tool_call=is_tool_call,
count_response_tokens=count_response_tokens,
tools=tools,
tool_choice=tool_choice,
use_default_image_token_count=use_default_image_token_count
or False,
)
else:
num_tokens = len(encoding.encode(text, disallowed_special=())) # type: ignore
return num_tokens
def supports_httpx_timeout(custom_llm_provider: str) -> bool:
"""
Helper function to know if a provider implementation supports httpx timeout
"""
supported_providers = ["openai", "azure", "bedrock"]
if custom_llm_provider in supported_providers:
return True
return False
def supports_system_messages(model: str, custom_llm_provider: Optional[str]) -> bool:
"""
Check if the given model supports system messages and return a boolean value.
Parameters:
model (str): The model name to be checked.
custom_llm_provider (str): The provider to be checked.
Returns:
bool: True if the model supports system messages, False otherwise.
Raises:
Exception: If the given model is not found in model_prices_and_context_window.json.
"""
return _supports_factory(
model=model,
custom_llm_provider=custom_llm_provider,
key="supports_system_messages",
)
def supports_response_schema(
model: str, custom_llm_provider: Optional[str] = None
) -> bool:
"""
Check if the given model + provider supports 'response_schema' as a param.
Parameters:
model (str): The model name to be checked.
custom_llm_provider (str): The provider to be checked.
Returns:
bool: True if the model supports response_schema, False otherwise.
Does not raise error. Defaults to 'False'. Outputs logging.error.
"""
## GET LLM PROVIDER ##
try:
model, custom_llm_provider, _, _ = get_llm_provider(
model=model, custom_llm_provider=custom_llm_provider
)
except Exception as e:
verbose_logger.debug(
f"Model not found or error in checking response schema support. You passed model={model}, custom_llm_provider={custom_llm_provider}. Error: {str(e)}"
)
return False
# providers that globally support response schema
PROVIDERS_GLOBALLY_SUPPORT_RESPONSE_SCHEMA = [
litellm.LlmProviders.PREDIBASE,
litellm.LlmProviders.FIREWORKS_AI,
]
if custom_llm_provider in PROVIDERS_GLOBALLY_SUPPORT_RESPONSE_SCHEMA:
return True
return _supports_factory(
model=model,
custom_llm_provider=custom_llm_provider,
key="supports_response_schema",
)
def supports_function_calling(
model: str, custom_llm_provider: Optional[str] = None
) -> bool:
"""
Check if the given model supports function calling and return a boolean value.
Parameters:
model (str): The model name to be checked.
custom_llm_provider (Optional[str]): The provider to be checked.
Returns:
bool: True if the model supports function calling, False otherwise.
Raises:
Exception: If the given model is not found or there's an error in retrieval.
"""
return _supports_factory(
model=model,
custom_llm_provider=custom_llm_provider,
key="supports_function_calling",
)
def supports_tool_choice(model: str, custom_llm_provider: Optional[str] = None) -> bool:
"""
Check if the given model supports `tool_choice` and return a boolean value.
"""
return _supports_factory(
model=model, custom_llm_provider=custom_llm_provider, key="supports_tool_choice"
)
def _supports_factory(model: str, custom_llm_provider: Optional[str], key: str) -> bool:
"""
Check if the given model supports function calling and return a boolean value.
Parameters:
model (str): The model name to be checked.
custom_llm_provider (Optional[str]): The provider to be checked.
Returns:
bool: True if the model supports function calling, False otherwise.
Raises:
Exception: If the given model is not found or there's an error in retrieval.
"""
try:
model, custom_llm_provider, _, _ = litellm.get_llm_provider(
model=model, custom_llm_provider=custom_llm_provider
)
model_info = _get_model_info_helper(
model=model, custom_llm_provider=custom_llm_provider
)
if model_info.get(key, False) is True:
return True
return False
except Exception as e:
verbose_logger.debug(
f"Model not found or error in checking {key} support. You passed model={model}, custom_llm_provider={custom_llm_provider}. Error: {str(e)}"
)
provider_info = get_provider_info(
model=model, custom_llm_provider=custom_llm_provider
)
if provider_info is not None and provider_info.get(key, False) is True:
return True
return False
def supports_audio_input(model: str, custom_llm_provider: Optional[str] = None) -> bool:
"""Check if a given model supports audio input in a chat completion call"""
return _supports_factory(
model=model, custom_llm_provider=custom_llm_provider, key="supports_audio_input"
)
def supports_pdf_input(model: str, custom_llm_provider: Optional[str] = None) -> bool:
"""Check if a given model supports pdf input in a chat completion call"""
return _supports_factory(
model=model, custom_llm_provider=custom_llm_provider, key="supports_pdf_input"
)
def supports_audio_output(
model: str, custom_llm_provider: Optional[str] = None
) -> bool:
"""Check if a given model supports audio output in a chat completion call"""
return _supports_factory(
model=model, custom_llm_provider=custom_llm_provider, key="supports_audio_input"
)
def supports_prompt_caching(
model: str, custom_llm_provider: Optional[str] = None
) -> bool:
"""
Check if the given model supports prompt caching and return a boolean value.
Parameters:
model (str): The model name to be checked.
custom_llm_provider (Optional[str]): The provider to be checked.
Returns:
bool: True if the model supports prompt caching, False otherwise.
Raises:
Exception: If the given model is not found or there's an error in retrieval.
"""
return _supports_factory(
model=model,
custom_llm_provider=custom_llm_provider,
key="supports_prompt_caching",
)
def supports_vision(model: str, custom_llm_provider: Optional[str] = None) -> bool:
"""
Check if the given model supports vision and return a boolean value.
Parameters:
model (str): The model name to be checked.
custom_llm_provider (Optional[str]): The provider to be checked.
Returns:
bool: True if the model supports vision, False otherwise.
"""
return _supports_factory(
model=model,
custom_llm_provider=custom_llm_provider,
key="supports_vision",
)
def supports_embedding_image_input(
model: str, custom_llm_provider: Optional[str] = None
) -> bool:
"""
Check if the given model supports embedding image input and return a boolean value.
"""
return _supports_factory(
model=model,
custom_llm_provider=custom_llm_provider,
key="supports_embedding_image_input",
)
def supports_parallel_function_calling(model: str):
"""
Check if the given model supports parallel function calling and return True if it does, False otherwise.
Parameters:
model (str): The model to check for support of parallel function calling.
Returns:
bool: True if the model supports parallel function calling, False otherwise.
Raises:
Exception: If the model is not found in the model_cost dictionary.
"""
if model in litellm.model_cost:
model_info = litellm.model_cost[model]
if model_info.get("supports_parallel_function_calling", False) is True:
return True
return False
else:
raise Exception(
f"Model not supports parallel function calling. You passed model={model}."
)
####### HELPER FUNCTIONS ################
def _update_dictionary(existing_dict: Dict, new_dict: dict) -> dict:
for k, v in new_dict.items():
existing_dict[k] = v
return existing_dict
def register_model(model_cost: Union[str, dict]): # noqa: PLR0915
"""
Register new / Override existing models (and their pricing) to specific providers.
Provide EITHER a model cost dictionary or a url to a hosted json blob
Example usage:
model_cost_dict = {
"gpt-4": {
"max_tokens": 8192,
"input_cost_per_token": 0.00003,
"output_cost_per_token": 0.00006,
"litellm_provider": "openai",
"mode": "chat"
},
}
"""
loaded_model_cost = {}
if isinstance(model_cost, dict):
loaded_model_cost = model_cost
elif isinstance(model_cost, str):
loaded_model_cost = litellm.get_model_cost_map(url=model_cost)
for key, value in loaded_model_cost.items():
## get model info ##
try:
existing_model: dict = cast(dict, get_model_info(model=key))
model_cost_key = existing_model["key"]
except Exception:
existing_model = {}
model_cost_key = key
## override / add new keys to the existing model cost dictionary
updated_dictionary = _update_dictionary(existing_model, value)
litellm.model_cost.setdefault(model_cost_key, {}).update(updated_dictionary)
verbose_logger.debug(
f"added/updated model={model_cost_key} in litellm.model_cost: {model_cost_key}"
)
# add new model names to provider lists
if value.get("litellm_provider") == "openai":
if key not in litellm.open_ai_chat_completion_models:
litellm.open_ai_chat_completion_models.append(key)
elif value.get("litellm_provider") == "text-completion-openai":
if key not in litellm.open_ai_text_completion_models:
litellm.open_ai_text_completion_models.append(key)
elif value.get("litellm_provider") == "cohere":
if key not in litellm.cohere_models:
litellm.cohere_models.append(key)
elif value.get("litellm_provider") == "anthropic":
if key not in litellm.anthropic_models:
litellm.anthropic_models.append(key)
elif value.get("litellm_provider") == "openrouter":
split_string = key.split("/", 1)
if key not in litellm.openrouter_models:
litellm.openrouter_models.append(split_string[1])
elif value.get("litellm_provider") == "vertex_ai-text-models":
if key not in litellm.vertex_text_models:
litellm.vertex_text_models.append(key)
elif value.get("litellm_provider") == "vertex_ai-code-text-models":
if key not in litellm.vertex_code_text_models:
litellm.vertex_code_text_models.append(key)
elif value.get("litellm_provider") == "vertex_ai-chat-models":
if key not in litellm.vertex_chat_models:
litellm.vertex_chat_models.append(key)
elif value.get("litellm_provider") == "vertex_ai-code-chat-models":
if key not in litellm.vertex_code_chat_models:
litellm.vertex_code_chat_models.append(key)
elif value.get("litellm_provider") == "ai21":
if key not in litellm.ai21_models:
litellm.ai21_models.append(key)
elif value.get("litellm_provider") == "nlp_cloud":
if key not in litellm.nlp_cloud_models:
litellm.nlp_cloud_models.append(key)
elif value.get("litellm_provider") == "aleph_alpha":
if key not in litellm.aleph_alpha_models:
litellm.aleph_alpha_models.append(key)
elif value.get("litellm_provider") == "bedrock":
if key not in litellm.bedrock_models:
litellm.bedrock_models.append(key)
return model_cost
def _should_drop_param(k, additional_drop_params) -> bool:
if (
additional_drop_params is not None
and isinstance(additional_drop_params, list)
and k in additional_drop_params
):
return True # allow user to drop specific params for a model - e.g. vllm - logit bias
return False
def _get_non_default_params(
passed_params: dict, default_params: dict, additional_drop_params: Optional[bool]
) -> dict:
non_default_params = {}
for k, v in passed_params.items():
if (
k in default_params
and v != default_params[k]
and _should_drop_param(k=k, additional_drop_params=additional_drop_params)
is False
):
non_default_params[k] = v
return non_default_params
def get_optional_params_transcription(
model: str,
language: Optional[str] = None,
prompt: Optional[str] = None,
response_format: Optional[str] = None,
temperature: Optional[int] = None,
timestamp_granularities: Optional[List[Literal["word", "segment"]]] = None,
custom_llm_provider: Optional[str] = None,
drop_params: Optional[bool] = None,
**kwargs,
):
# retrieve all parameters passed to the function
passed_params = locals()
custom_llm_provider = passed_params.pop("custom_llm_provider")
drop_params = passed_params.pop("drop_params")
special_params = passed_params.pop("kwargs")
for k, v in special_params.items():
passed_params[k] = v
default_params = {
"language": None,
"prompt": None,
"response_format": None,
"temperature": None, # openai defaults this to 0
}
non_default_params = {
k: v
for k, v in passed_params.items()
if (k in default_params and v != default_params[k])
}
optional_params = {}
## raise exception if non-default value passed for non-openai/azure embedding calls
def _check_valid_arg(supported_params):
if len(non_default_params.keys()) > 0:
keys = list(non_default_params.keys())
for k in keys:
if (
drop_params is True or litellm.drop_params is True
) and k not in supported_params: # drop the unsupported non-default values
non_default_params.pop(k, None)
elif k not in supported_params:
raise UnsupportedParamsError(
status_code=500,
message=f"Setting user/encoding format is not supported by {custom_llm_provider}. To drop it from the call, set `litellm.drop_params = True`.",
)
return non_default_params
provider_config: Optional[BaseAudioTranscriptionConfig] = None
if custom_llm_provider is not None:
provider_config = ProviderConfigManager.get_provider_audio_transcription_config(
model=model,
provider=LlmProviders(custom_llm_provider),
)
if custom_llm_provider == "openai" or custom_llm_provider == "azure":
optional_params = non_default_params
elif custom_llm_provider == "groq":
supported_params = litellm.GroqSTTConfig().get_supported_openai_params_stt()
_check_valid_arg(supported_params=supported_params)
optional_params = litellm.GroqSTTConfig().map_openai_params_stt(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=drop_params if drop_params is not None else False,
)
elif provider_config is not None: # handles fireworks ai, and any future providers
supported_params = provider_config.get_supported_openai_params(model=model)
_check_valid_arg(supported_params=supported_params)
optional_params = provider_config.map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=drop_params if drop_params is not None else False,
)
for k in passed_params.keys(): # pass additional kwargs without modification
if k not in default_params.keys():
optional_params[k] = passed_params[k]
return optional_params
def get_optional_params_image_gen(
model: Optional[str] = None,
n: Optional[int] = None,
quality: Optional[str] = None,
response_format: Optional[str] = None,
size: Optional[str] = None,
style: Optional[str] = None,
user: Optional[str] = None,
custom_llm_provider: Optional[str] = None,
additional_drop_params: Optional[bool] = None,
**kwargs,
):
# retrieve all parameters passed to the function
passed_params = locals()
model = passed_params.pop("model", None)
custom_llm_provider = passed_params.pop("custom_llm_provider")
additional_drop_params = passed_params.pop("additional_drop_params", None)
special_params = passed_params.pop("kwargs")
for k, v in special_params.items():
if k.startswith("aws_") and (
custom_llm_provider != "bedrock" and custom_llm_provider != "sagemaker"
): # allow dynamically setting boto3 init logic
continue
elif k == "hf_model_name" and custom_llm_provider != "sagemaker":
continue
elif (
k.startswith("vertex_")
and custom_llm_provider != "vertex_ai"
and custom_llm_provider != "vertex_ai_beta"
): # allow dynamically setting vertex ai init logic
continue
passed_params[k] = v
default_params = {
"n": None,
"quality": None,
"response_format": None,
"size": None,
"style": None,
"user": None,
}
non_default_params = _get_non_default_params(
passed_params=passed_params,
default_params=default_params,
additional_drop_params=additional_drop_params,
)
optional_params = {}
## raise exception if non-default value passed for non-openai/azure embedding calls
def _check_valid_arg(supported_params):
if len(non_default_params.keys()) > 0:
keys = list(non_default_params.keys())
for k in keys:
if (
litellm.drop_params is True and k not in supported_params
): # drop the unsupported non-default values
non_default_params.pop(k, None)
elif k not in supported_params:
raise UnsupportedParamsError(
status_code=500,
message=f"Setting `{k}` is not supported by {custom_llm_provider}. To drop it from the call, set `litellm.drop_params = True`.",
)
return non_default_params
if (
custom_llm_provider == "openai"
or custom_llm_provider == "azure"
or custom_llm_provider in litellm.openai_compatible_providers
):
optional_params = non_default_params
elif custom_llm_provider == "bedrock":
# use stability3 config class if model is a stability3 model
config_class = (
litellm.AmazonStability3Config
if litellm.AmazonStability3Config._is_stability_3_model(model=model)
else litellm.AmazonStabilityConfig
)
supported_params = config_class.get_supported_openai_params(model=model)
_check_valid_arg(supported_params=supported_params)
optional_params = config_class.map_openai_params(
non_default_params=non_default_params, optional_params={}
)
elif custom_llm_provider == "vertex_ai":
supported_params = ["n"]
"""
All params here: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/imagegeneration?project=adroit-crow-413218
"""
_check_valid_arg(supported_params=supported_params)
if n is not None:
optional_params["sampleCount"] = int(n)
for k in passed_params.keys():
if k not in default_params.keys():
optional_params[k] = passed_params[k]
return optional_params
def get_optional_params_embeddings( # noqa: PLR0915
# 2 optional params
model: str,
user: Optional[str] = None,
encoding_format: Optional[str] = None,
dimensions: Optional[int] = None,
custom_llm_provider="",
drop_params: Optional[bool] = None,
additional_drop_params: Optional[bool] = None,
**kwargs,
):
# retrieve all parameters passed to the function
passed_params = locals()
custom_llm_provider = passed_params.pop("custom_llm_provider", None)
special_params = passed_params.pop("kwargs")
for k, v in special_params.items():
passed_params[k] = v
drop_params = passed_params.pop("drop_params", None)
additional_drop_params = passed_params.pop("additional_drop_params", None)
default_params = {"user": None, "encoding_format": None, "dimensions": None}
def _check_valid_arg(supported_params: Optional[list]):
if supported_params is None:
return
unsupported_params = {}
for k in non_default_params.keys():
if k not in supported_params:
unsupported_params[k] = non_default_params[k]
if unsupported_params:
if litellm.drop_params is True or (
drop_params is not None and drop_params is True
):
pass
else:
raise UnsupportedParamsError(
status_code=500,
message=f"{custom_llm_provider} does not support parameters: {unsupported_params}, for model={model}. To drop these, set `litellm.drop_params=True` or for proxy:\n\n`litellm_settings:\n drop_params: true`\n",
)
non_default_params = _get_non_default_params(
passed_params=passed_params,
default_params=default_params,
additional_drop_params=additional_drop_params,
)
## raise exception if non-default value passed for non-openai/azure embedding calls
if custom_llm_provider == "openai":
# 'dimensions` is only supported in `text-embedding-3` and later models
if (
model is not None
and "text-embedding-3" not in model
and "dimensions" in non_default_params.keys()
):
raise UnsupportedParamsError(
status_code=500,
message="Setting dimensions is not supported for OpenAI `text-embedding-3` and later models. To drop it from the call, set `litellm.drop_params = True`.",
)
elif custom_llm_provider == "triton":
supported_params = get_supported_openai_params(
model=model,
custom_llm_provider=custom_llm_provider,
request_type="embeddings",
)
_check_valid_arg(supported_params=supported_params)
optional_params = litellm.TritonEmbeddingConfig().map_openai_params(
non_default_params=non_default_params,
optional_params={},
model=model,
drop_params=drop_params if drop_params is not None else False,
)
final_params = {**optional_params, **kwargs}
return final_params
elif custom_llm_provider == "databricks":
supported_params = get_supported_openai_params(
model=model or "",
custom_llm_provider="databricks",
request_type="embeddings",
)
_check_valid_arg(supported_params=supported_params)
optional_params = litellm.DatabricksEmbeddingConfig().map_openai_params(
non_default_params=non_default_params, optional_params={}
)
final_params = {**optional_params, **kwargs}
return final_params
elif custom_llm_provider == "nvidia_nim":
supported_params = get_supported_openai_params(
model=model or "",
custom_llm_provider="nvidia_nim",
request_type="embeddings",
)
_check_valid_arg(supported_params=supported_params)
optional_params = litellm.nvidiaNimEmbeddingConfig.map_openai_params(
non_default_params=non_default_params, optional_params={}, kwargs=kwargs
)
return optional_params
elif custom_llm_provider == "vertex_ai":
supported_params = get_supported_openai_params(
model=model,
custom_llm_provider="vertex_ai",
request_type="embeddings",
)
_check_valid_arg(supported_params=supported_params)
(
optional_params,
kwargs,
) = litellm.VertexAITextEmbeddingConfig().map_openai_params(
non_default_params=non_default_params, optional_params={}, kwargs=kwargs
)
final_params = {**optional_params, **kwargs}
return final_params
elif custom_llm_provider == "lm_studio":
supported_params = (
litellm.LmStudioEmbeddingConfig().get_supported_openai_params()
)
_check_valid_arg(supported_params=supported_params)
optional_params = litellm.LmStudioEmbeddingConfig().map_openai_params(
non_default_params=non_default_params, optional_params={}
)
final_params = {**optional_params, **kwargs}
return final_params
elif custom_llm_provider == "bedrock":
# if dimensions is in non_default_params -> pass it for model=bedrock/amazon.titan-embed-text-v2
if "amazon.titan-embed-text-v1" in model:
object: Any = litellm.AmazonTitanG1Config()
elif "amazon.titan-embed-image-v1" in model:
object = litellm.AmazonTitanMultimodalEmbeddingG1Config()
elif "amazon.titan-embed-text-v2:0" in model:
object = litellm.AmazonTitanV2Config()
elif "cohere.embed-multilingual-v3" in model:
object = litellm.BedrockCohereEmbeddingConfig()
else: # unmapped model
supported_params = []
_check_valid_arg(supported_params=supported_params)
final_params = {**kwargs}
return final_params
supported_params = object.get_supported_openai_params()
_check_valid_arg(supported_params=supported_params)
optional_params = object.map_openai_params(
non_default_params=non_default_params, optional_params={}
)
final_params = {**optional_params, **kwargs}
return final_params
elif custom_llm_provider == "mistral":
supported_params = get_supported_openai_params(
model=model,
custom_llm_provider="mistral",
request_type="embeddings",
)
_check_valid_arg(supported_params=supported_params)
optional_params = litellm.MistralEmbeddingConfig().map_openai_params(
non_default_params=non_default_params, optional_params={}
)
final_params = {**optional_params, **kwargs}
return final_params
elif custom_llm_provider == "jina_ai":
supported_params = get_supported_openai_params(
model=model,
custom_llm_provider="jina_ai",
request_type="embeddings",
)
_check_valid_arg(supported_params=supported_params)
optional_params = litellm.JinaAIEmbeddingConfig().map_openai_params(
non_default_params=non_default_params, optional_params={}
)
final_params = {**optional_params, **kwargs}
return final_params
elif custom_llm_provider == "voyage":
supported_params = get_supported_openai_params(
model=model,
custom_llm_provider="voyage",
request_type="embeddings",
)
_check_valid_arg(supported_params=supported_params)
optional_params = litellm.VoyageEmbeddingConfig().map_openai_params(
non_default_params=non_default_params,
optional_params={},
model=model,
drop_params=drop_params if drop_params is not None else False,
)
final_params = {**optional_params, **kwargs}
return final_params
elif custom_llm_provider == "fireworks_ai":
supported_params = get_supported_openai_params(
model=model,
custom_llm_provider="fireworks_ai",
request_type="embeddings",
)
_check_valid_arg(supported_params=supported_params)
optional_params = litellm.FireworksAIEmbeddingConfig().map_openai_params(
non_default_params=non_default_params, optional_params={}, model=model
)
final_params = {**optional_params, **kwargs}
return final_params
elif (
custom_llm_provider != "openai"
and custom_llm_provider != "azure"
and custom_llm_provider not in litellm.openai_compatible_providers
):
if len(non_default_params.keys()) > 0:
if (
litellm.drop_params is True or drop_params is True
): # drop the unsupported non-default values
keys = list(non_default_params.keys())
for k in keys:
non_default_params.pop(k, None)
else:
raise UnsupportedParamsError(
status_code=500,
message=f"Setting {non_default_params} is not supported by {custom_llm_provider}. To drop it from the call, set `litellm.drop_params = True`.",
)
final_params = {**non_default_params, **kwargs}
return final_params
def _remove_additional_properties(schema):
"""
clean out 'additionalProperties = False'. Causes vertexai/gemini OpenAI API Schema errors - https://github.com/langchain-ai/langchainjs/issues/5240
Relevant Issues: https://github.com/BerriAI/litellm/issues/6136, https://github.com/BerriAI/litellm/issues/6088
"""
if isinstance(schema, dict):
# Remove the 'additionalProperties' key if it exists and is set to False
if "additionalProperties" in schema and schema["additionalProperties"] is False:
del schema["additionalProperties"]
# Recursively process all dictionary values
for key, value in schema.items():
_remove_additional_properties(value)
elif isinstance(schema, list):
# Recursively process all items in the list
for item in schema:
_remove_additional_properties(item)
return schema
def _remove_strict_from_schema(schema):
"""
Relevant Issues: https://github.com/BerriAI/litellm/issues/6136, https://github.com/BerriAI/litellm/issues/6088
"""
if isinstance(schema, dict):
# Remove the 'additionalProperties' key if it exists and is set to False
if "strict" in schema:
del schema["strict"]
# Recursively process all dictionary values
for key, value in schema.items():
_remove_strict_from_schema(value)
elif isinstance(schema, list):
# Recursively process all items in the list
for item in schema:
_remove_strict_from_schema(item)
return schema
def _remove_unsupported_params(
non_default_params: dict, supported_openai_params: Optional[List[str]]
) -> dict:
"""
Remove unsupported params from non_default_params
"""
remove_keys = []
if supported_openai_params is None:
return {} # no supported params, so no optional openai params to send
for param in non_default_params.keys():
if param not in supported_openai_params:
remove_keys.append(param)
for key in remove_keys:
non_default_params.pop(key, None)
return non_default_params
def get_optional_params( # noqa: PLR0915
# use the openai defaults
# https://platform.openai.com/docs/api-reference/chat/create
model: str,
functions=None,
function_call=None,
temperature=None,
top_p=None,
n=None,
stream=False,
stream_options=None,
stop=None,
max_tokens=None,
max_completion_tokens=None,
modalities=None,
prediction=None,
audio=None,
presence_penalty=None,
frequency_penalty=None,
logit_bias=None,
user=None,
custom_llm_provider="",
response_format=None,
seed=None,
tools=None,
tool_choice=None,
max_retries=None,
logprobs=None,
top_logprobs=None,
extra_headers=None,
api_version=None,
parallel_tool_calls=None,
drop_params=None,
reasoning_effort=None,
additional_drop_params=None,
messages: Optional[List[AllMessageValues]] = None,
**kwargs,
):
# retrieve all parameters passed to the function
passed_params = locals().copy()
special_params = passed_params.pop("kwargs")
for k, v in special_params.items():
if k.startswith("aws_") and (
custom_llm_provider != "bedrock" and custom_llm_provider != "sagemaker"
): # allow dynamically setting boto3 init logic
continue
elif k == "hf_model_name" and custom_llm_provider != "sagemaker":
continue
elif (
k.startswith("vertex_")
and custom_llm_provider != "vertex_ai"
and custom_llm_provider != "vertex_ai_beta"
): # allow dynamically setting vertex ai init logic
continue
passed_params[k] = v
optional_params: Dict = {}
common_auth_dict = litellm.common_cloud_provider_auth_params
if custom_llm_provider in common_auth_dict["providers"]:
"""
Check if params = ["project", "region_name", "token"]
and correctly translate for = ["azure", "vertex_ai", "watsonx", "aws"]
"""
if custom_llm_provider == "azure":
optional_params = litellm.AzureOpenAIConfig().map_special_auth_params(
non_default_params=passed_params, optional_params=optional_params
)
elif custom_llm_provider == "bedrock":
optional_params = (
litellm.AmazonBedrockGlobalConfig().map_special_auth_params(
non_default_params=passed_params, optional_params=optional_params
)
)
elif (
custom_llm_provider == "vertex_ai"
or custom_llm_provider == "vertex_ai_beta"
):
optional_params = litellm.VertexAIConfig().map_special_auth_params(
non_default_params=passed_params, optional_params=optional_params
)
elif custom_llm_provider == "watsonx":
optional_params = litellm.IBMWatsonXAIConfig().map_special_auth_params(
non_default_params=passed_params, optional_params=optional_params
)
default_params = {
"functions": None,
"function_call": None,
"temperature": None,
"top_p": None,
"n": None,
"stream": None,
"stream_options": None,
"stop": None,
"max_tokens": None,
"max_completion_tokens": None,
"modalities": None,
"prediction": None,
"audio": None,
"presence_penalty": None,
"frequency_penalty": None,
"logit_bias": None,
"user": None,
"model": None,
"custom_llm_provider": "",
"response_format": None,
"seed": None,
"tools": None,
"tool_choice": None,
"max_retries": None,
"logprobs": None,
"top_logprobs": None,
"extra_headers": None,
"api_version": None,
"parallel_tool_calls": None,
"drop_params": None,
"additional_drop_params": None,
"messages": None,
"reasoning_effort": None,
}
# filter out those parameters that were passed with non-default values
non_default_params = {
k: v
for k, v in passed_params.items()
if (
k != "model"
and k != "custom_llm_provider"
and k != "api_version"
and k != "drop_params"
and k != "additional_drop_params"
and k != "messages"
and k in default_params
and v != default_params[k]
and _should_drop_param(k=k, additional_drop_params=additional_drop_params)
is False
)
}
## raise exception if function calling passed in for a provider that doesn't support it
if (
"functions" in non_default_params
or "function_call" in non_default_params
or "tools" in non_default_params
):
if (
custom_llm_provider == "ollama"
and custom_llm_provider != "text-completion-openai"
and custom_llm_provider != "azure"
and custom_llm_provider != "vertex_ai"
and custom_llm_provider != "anyscale"
and custom_llm_provider != "together_ai"
and custom_llm_provider != "groq"
and custom_llm_provider != "nvidia_nim"
and custom_llm_provider != "cerebras"
and custom_llm_provider != "xai"
and custom_llm_provider != "ai21_chat"
and custom_llm_provider != "volcengine"
and custom_llm_provider != "deepseek"
and custom_llm_provider != "codestral"
and custom_llm_provider != "mistral"
and custom_llm_provider != "anthropic"
and custom_llm_provider != "cohere_chat"
and custom_llm_provider != "cohere"
and custom_llm_provider != "bedrock"
and custom_llm_provider != "ollama_chat"
and custom_llm_provider != "openrouter"
and custom_llm_provider not in litellm.openai_compatible_providers
):
if custom_llm_provider == "ollama":
# ollama actually supports json output
optional_params["format"] = "json"
litellm.add_function_to_prompt = (
True # so that main.py adds the function call to the prompt
)
if "tools" in non_default_params:
optional_params["functions_unsupported_model"] = (
non_default_params.pop("tools")
)
non_default_params.pop(
"tool_choice", None
) # causes ollama requests to hang
elif "functions" in non_default_params:
optional_params["functions_unsupported_model"] = (
non_default_params.pop("functions")
)
elif (
litellm.add_function_to_prompt
): # if user opts to add it to prompt instead
optional_params["functions_unsupported_model"] = non_default_params.pop(
"tools", non_default_params.pop("functions", None)
)
else:
raise UnsupportedParamsError(
status_code=500,
message=f"Function calling is not supported by {custom_llm_provider}.",
)
provider_config: Optional[BaseConfig] = None
if custom_llm_provider is not None and custom_llm_provider in [
provider.value for provider in LlmProviders
]:
provider_config = ProviderConfigManager.get_provider_chat_config(
model=model, provider=LlmProviders(custom_llm_provider)
)
if "response_format" in non_default_params:
if provider_config is not None:
non_default_params["response_format"] = (
provider_config.get_json_schema_from_pydantic_object(
response_format=non_default_params["response_format"]
)
)
else:
non_default_params["response_format"] = type_to_response_format_param(
response_format=non_default_params["response_format"]
)
if "tools" in non_default_params and isinstance(
non_default_params, list
): # fixes https://github.com/BerriAI/litellm/issues/4933
tools = non_default_params["tools"]
for (
tool
) in (
tools
): # clean out 'additionalProperties = False'. Causes vertexai/gemini OpenAI API Schema errors - https://github.com/langchain-ai/langchainjs/issues/5240
tool_function = tool.get("function", {})
parameters = tool_function.get("parameters", None)
if parameters is not None:
new_parameters = copy.deepcopy(parameters)
if (
"additionalProperties" in new_parameters
and new_parameters["additionalProperties"] is False
):
new_parameters.pop("additionalProperties", None)
tool_function["parameters"] = new_parameters
def _check_valid_arg(supported_params: List[str]):
verbose_logger.info(
f"\nLiteLLM completion() model= {model}; provider = {custom_llm_provider}"
)
verbose_logger.debug(
f"\nLiteLLM: Params passed to completion() {passed_params}"
)
verbose_logger.debug(
f"\nLiteLLM: Non-Default params passed to completion() {non_default_params}"
)
unsupported_params = {}
for k in non_default_params.keys():
if k not in supported_params:
if k == "user" or k == "stream_options" or k == "stream":
continue
if k == "n" and n == 1: # langchain sends n=1 as a default value
continue # skip this param
if (
k == "max_retries"
): # TODO: This is a patch. We support max retries for OpenAI, Azure. For non OpenAI LLMs we need to add support for max retries
continue # skip this param
# Always keeps this in elif code blocks
else:
unsupported_params[k] = non_default_params[k]
if unsupported_params:
if litellm.drop_params is True or (
drop_params is not None and drop_params is True
):
for k in unsupported_params.keys():
non_default_params.pop(k, None)
else:
raise UnsupportedParamsError(
status_code=500,
message=f"{custom_llm_provider} does not support parameters: {unsupported_params}, for model={model}. To drop these, set `litellm.drop_params=True` or for proxy:\n\n`litellm_settings:\n drop_params: true`\n",
)
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
if supported_params is None:
supported_params = get_supported_openai_params(
model=model, custom_llm_provider="openai"
)
_check_valid_arg(supported_params=supported_params or [])
## raise exception if provider doesn't support passed in param
if custom_llm_provider == "anthropic":
## check if unsupported param passed in
optional_params = litellm.AnthropicConfig().map_openai_params(
model=model,
non_default_params=non_default_params,
optional_params=optional_params,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "anthropic_text":
optional_params = litellm.AnthropicTextConfig().map_openai_params(
model=model,
non_default_params=non_default_params,
optional_params=optional_params,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
optional_params = litellm.AnthropicTextConfig().map_openai_params(
model=model,
non_default_params=non_default_params,
optional_params=optional_params,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "cohere":
## check if unsupported param passed in
# handle cohere params
optional_params = litellm.CohereConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "cohere_chat":
# handle cohere params
optional_params = litellm.CohereChatConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "triton":
optional_params = litellm.TritonConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=drop_params if drop_params is not None else False,
)
elif custom_llm_provider == "maritalk":
optional_params = litellm.MaritalkConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "replicate":
optional_params = litellm.ReplicateConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "predibase":
optional_params = litellm.PredibaseConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "huggingface":
optional_params = litellm.HuggingfaceConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "together_ai":
optional_params = litellm.TogetherAIConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "vertex_ai" and (
model in litellm.vertex_chat_models
or model in litellm.vertex_code_chat_models
or model in litellm.vertex_text_models
or model in litellm.vertex_code_text_models
or model in litellm.vertex_language_models
or model in litellm.vertex_vision_models
):
optional_params = litellm.VertexGeminiConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "gemini":
optional_params = litellm.GoogleAIStudioGeminiConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "vertex_ai_beta" or (
custom_llm_provider == "vertex_ai" and "gemini" in model
):
optional_params = litellm.VertexGeminiConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif litellm.VertexAIAnthropicConfig.is_supported_model(
model=model, custom_llm_provider=custom_llm_provider
):
optional_params = litellm.VertexAIAnthropicConfig().map_openai_params(
model=model,
non_default_params=non_default_params,
optional_params=optional_params,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "vertex_ai" and model in litellm.vertex_llama3_models:
optional_params = litellm.VertexAILlama3Config().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "vertex_ai" and model in litellm.vertex_mistral_models:
if "codestral" in model:
optional_params = litellm.CodestralTextCompletionConfig().map_openai_params(
model=model,
non_default_params=non_default_params,
optional_params=optional_params,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
else:
optional_params = litellm.MistralConfig().map_openai_params(
model=model,
non_default_params=non_default_params,
optional_params=optional_params,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "vertex_ai" and model in litellm.vertex_ai_ai21_models:
optional_params = litellm.VertexAIAi21Config().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "sagemaker":
# temperature, top_p, n, stream, stop, max_tokens, n, presence_penalty default to None
optional_params = litellm.SagemakerConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "bedrock":
base_model = litellm.AmazonConverseConfig()._get_base_model(model)
if base_model in litellm.bedrock_converse_models:
optional_params = litellm.AmazonConverseConfig().map_openai_params(
model=model,
non_default_params=non_default_params,
optional_params=optional_params,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
messages=messages,
)
elif "anthropic" in model:
if "aws_bedrock_client" in passed_params: # deprecated boto3.invoke route.
if model.startswith("anthropic.claude-3"):
optional_params = (
litellm.AmazonAnthropicClaude3Config().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
)
)
else:
optional_params = litellm.AmazonAnthropicConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
)
elif provider_config is not None:
optional_params = provider_config.map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "cloudflare":
optional_params = litellm.CloudflareChatConfig().map_openai_params(
model=model,
non_default_params=non_default_params,
optional_params=optional_params,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "ollama":
optional_params = litellm.OllamaConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "ollama_chat":
optional_params = litellm.OllamaChatConfig().map_openai_params(
model=model,
non_default_params=non_default_params,
optional_params=optional_params,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "nlp_cloud":
optional_params = litellm.NLPCloudConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "petals":
optional_params = litellm.PetalsConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "deepinfra":
optional_params = litellm.DeepInfraConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "perplexity" and provider_config is not None:
optional_params = provider_config.map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "mistral" or custom_llm_provider == "codestral":
optional_params = litellm.MistralConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "text-completion-codestral":
optional_params = litellm.CodestralTextCompletionConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "databricks":
optional_params = litellm.DatabricksConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "nvidia_nim":
optional_params = litellm.NvidiaNimConfig().map_openai_params(
model=model,
non_default_params=non_default_params,
optional_params=optional_params,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "cerebras":
optional_params = litellm.CerebrasConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "xai":
optional_params = litellm.XAIChatConfig().map_openai_params(
model=model,
non_default_params=non_default_params,
optional_params=optional_params,
)
elif custom_llm_provider == "ai21_chat" or custom_llm_provider == "ai21":
optional_params = litellm.AI21ChatConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "fireworks_ai":
optional_params = litellm.FireworksAIConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "volcengine":
optional_params = litellm.VolcEngineConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "hosted_vllm":
optional_params = litellm.HostedVLLMChatConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "vllm":
optional_params = litellm.VLLMConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "groq":
optional_params = litellm.GroqChatConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "deepseek":
optional_params = litellm.OpenAIConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "openrouter":
optional_params = litellm.OpenrouterConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "watsonx":
optional_params = litellm.IBMWatsonXChatConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
# WatsonX-text param check
for param in passed_params.keys():
if litellm.IBMWatsonXAIConfig().is_watsonx_text_param(param):
raise ValueError(
f"LiteLLM now defaults to Watsonx's `/text/chat` endpoint. Please use the `watsonx_text` provider instead, to call the `/text/generation` endpoint. Param: {param}"
)
elif custom_llm_provider == "watsonx_text":
optional_params = litellm.IBMWatsonXAIConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "openai":
optional_params = litellm.OpenAIConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
elif custom_llm_provider == "azure":
if litellm.AzureOpenAIO1Config().is_o_series_model(model=model):
optional_params = litellm.AzureOpenAIO1Config().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
else:
verbose_logger.debug(
"Azure optional params - api_version: api_version={}, litellm.api_version={}, os.environ['AZURE_API_VERSION']={}".format(
api_version, litellm.api_version, get_secret("AZURE_API_VERSION")
)
)
api_version = (
api_version
or litellm.api_version
or get_secret("AZURE_API_VERSION")
or litellm.AZURE_DEFAULT_API_VERSION
)
optional_params = litellm.AzureOpenAIConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
api_version=api_version, # type: ignore
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
else: # assume passing in params for openai-like api
optional_params = litellm.OpenAILikeChatConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
if (
custom_llm_provider
in ["openai", "azure", "text-completion-openai"]
+ litellm.openai_compatible_providers
):
# for openai, azure we should pass the extra/passed params within `extra_body` https://github.com/openai/openai-python/blob/ac33853ba10d13ac149b1fa3ca6dba7d613065c9/src/openai/resources/models.py#L46
if (
_should_drop_param(
k="extra_body", additional_drop_params=additional_drop_params
)
is False
):
extra_body = passed_params.pop("extra_body", {})
for k in passed_params.keys():
if k not in default_params.keys():
extra_body[k] = passed_params[k]
optional_params.setdefault("extra_body", {})
optional_params["extra_body"] = {
**optional_params["extra_body"],
**extra_body,
}
optional_params["extra_body"] = _ensure_extra_body_is_safe(
extra_body=optional_params["extra_body"]
)
else:
# if user passed in non-default kwargs for specific providers/models, pass them along
for k in passed_params.keys():
if k not in default_params.keys():
optional_params[k] = passed_params[k]
print_verbose(f"Final returned optional params: {optional_params}")
return optional_params
def get_non_default_params(passed_params: dict) -> dict:
default_params = {
"functions": None,
"function_call": None,
"temperature": None,
"top_p": None,
"n": None,
"stream": None,
"stream_options": None,
"stop": None,
"max_tokens": None,
"presence_penalty": None,
"frequency_penalty": None,
"logit_bias": None,
"user": None,
"model": None,
"custom_llm_provider": "",
"response_format": None,
"seed": None,
"tools": None,
"tool_choice": None,
"max_retries": None,
"logprobs": None,
"top_logprobs": None,
"extra_headers": None,
}
# filter out those parameters that were passed with non-default values
non_default_params = {
k: v
for k, v in passed_params.items()
if (
k != "model"
and k != "custom_llm_provider"
and k in default_params
and v != default_params[k]
)
}
return non_default_params
def calculate_max_parallel_requests(
max_parallel_requests: Optional[int],
rpm: Optional[int],
tpm: Optional[int],
default_max_parallel_requests: Optional[int],
) -> Optional[int]:
"""
Returns the max parallel requests to send to a deployment.
Used in semaphore for async requests on router.
Parameters:
- max_parallel_requests - Optional[int] - max_parallel_requests allowed for that deployment
- rpm - Optional[int] - requests per minute allowed for that deployment
- tpm - Optional[int] - tokens per minute allowed for that deployment
- default_max_parallel_requests - Optional[int] - default_max_parallel_requests allowed for any deployment
Returns:
- int or None (if all params are None)
Order:
max_parallel_requests > rpm > tpm / 6 (azure formula) > default max_parallel_requests
Azure RPM formula:
6 rpm per 1000 TPM
https://learn.microsoft.com/en-us/azure/ai-services/openai/quotas-limits
"""
if max_parallel_requests is not None:
return max_parallel_requests
elif rpm is not None:
return rpm
elif tpm is not None:
calculated_rpm = int(tpm / 1000 / 6)
if calculated_rpm == 0:
calculated_rpm = 1
return calculated_rpm
elif default_max_parallel_requests is not None:
return default_max_parallel_requests
return None
def _get_order_filtered_deployments(healthy_deployments: List[Dict]) -> List:
min_order = min(
(
deployment["litellm_params"]["order"]
for deployment in healthy_deployments
if "order" in deployment["litellm_params"]
),
default=None,
)
if min_order is not None:
filtered_deployments = [
deployment
for deployment in healthy_deployments
if deployment["litellm_params"].get("order") == min_order
]
return filtered_deployments
return healthy_deployments
def _get_model_region(
custom_llm_provider: str, litellm_params: LiteLLM_Params
) -> Optional[str]:
"""
Return the region for a model, for a given provider
"""
if custom_llm_provider == "vertex_ai":
# check 'vertex_location'
vertex_ai_location = (
litellm_params.vertex_location
or litellm.vertex_location
or get_secret("VERTEXAI_LOCATION")
or get_secret("VERTEX_LOCATION")
)
if vertex_ai_location is not None and isinstance(vertex_ai_location, str):
return vertex_ai_location
elif custom_llm_provider == "bedrock":
aws_region_name = litellm_params.aws_region_name
if aws_region_name is not None:
return aws_region_name
elif custom_llm_provider == "watsonx":
watsonx_region_name = litellm_params.watsonx_region_name
if watsonx_region_name is not None:
return watsonx_region_name
return litellm_params.region_name
def _infer_model_region(litellm_params: LiteLLM_Params) -> Optional[AllowedModelRegion]:
"""
Infer if a model is in the EU or US region
Returns:
- str (region) - "eu" or "us"
- None (if region not found)
"""
model, custom_llm_provider, _, _ = litellm.get_llm_provider(
model=litellm_params.model, litellm_params=litellm_params
)
model_region = _get_model_region(
custom_llm_provider=custom_llm_provider, litellm_params=litellm_params
)
if model_region is None:
verbose_logger.debug(
"Cannot infer model region for model: {}".format(litellm_params.model)
)
return None
if custom_llm_provider == "azure":
eu_regions = litellm.AzureOpenAIConfig().get_eu_regions()
us_regions = litellm.AzureOpenAIConfig().get_us_regions()
elif custom_llm_provider == "vertex_ai":
eu_regions = litellm.VertexAIConfig().get_eu_regions()
us_regions = litellm.VertexAIConfig().get_us_regions()
elif custom_llm_provider == "bedrock":
eu_regions = litellm.AmazonBedrockGlobalConfig().get_eu_regions()
us_regions = litellm.AmazonBedrockGlobalConfig().get_us_regions()
elif custom_llm_provider == "watsonx":
eu_regions = litellm.IBMWatsonXAIConfig().get_eu_regions()
us_regions = litellm.IBMWatsonXAIConfig().get_us_regions()
else:
eu_regions = []
us_regions = []
for region in eu_regions:
if region in model_region.lower():
return "eu"
for region in us_regions:
if region in model_region.lower():
return "us"
return None
def _is_region_eu(litellm_params: LiteLLM_Params) -> bool:
"""
Return true/false if a deployment is in the EU
"""
if litellm_params.region_name == "eu":
return True
## Else - try and infer from model region
model_region = _infer_model_region(litellm_params=litellm_params)
if model_region is not None and model_region == "eu":
return True
return False
def _is_region_us(litellm_params: LiteLLM_Params) -> bool:
"""
Return true/false if a deployment is in the US
"""
if litellm_params.region_name == "us":
return True
## Else - try and infer from model region
model_region = _infer_model_region(litellm_params=litellm_params)
if model_region is not None and model_region == "us":
return True
return False
def is_region_allowed(
litellm_params: LiteLLM_Params, allowed_model_region: str
) -> bool:
"""
Return true/false if a deployment is in the EU
"""
if litellm_params.region_name == allowed_model_region:
return True
return False
def get_model_region(
litellm_params: LiteLLM_Params, mode: Optional[str]
) -> Optional[str]:
"""
Pass the litellm params for an azure model, and get back the region
"""
if (
"azure" in litellm_params.model
and isinstance(litellm_params.api_key, str)
and isinstance(litellm_params.api_base, str)
):
_model = litellm_params.model.replace("azure/", "")
response: dict = litellm.AzureChatCompletion().get_headers(
model=_model,
api_key=litellm_params.api_key,
api_base=litellm_params.api_base,
api_version=litellm_params.api_version or litellm.AZURE_DEFAULT_API_VERSION,
timeout=10,
mode=mode or "chat",
)
region: Optional[str] = response.get("x-ms-region", None)
return region
return None
def get_first_chars_messages(kwargs: dict) -> str:
try:
_messages = kwargs.get("messages")
_messages = str(_messages)[:100]
return _messages
except Exception:
return ""
def _count_characters(text: str) -> int:
# Remove white spaces and count characters
filtered_text = "".join(char for char in text if not char.isspace())
return len(filtered_text)
def get_response_string(response_obj: ModelResponse) -> str:
_choices: List[Union[Choices, StreamingChoices]] = response_obj.choices
response_str = ""
for choice in _choices:
if isinstance(choice, Choices):
if choice.message.content is not None:
response_str += choice.message.content
elif isinstance(choice, StreamingChoices):
if choice.delta.content is not None:
response_str += choice.delta.content
return response_str
def get_api_key(llm_provider: str, dynamic_api_key: Optional[str]):
api_key = dynamic_api_key or litellm.api_key
# openai
if llm_provider == "openai" or llm_provider == "text-completion-openai":
api_key = api_key or litellm.openai_key or get_secret("OPENAI_API_KEY")
# anthropic
elif llm_provider == "anthropic" or llm_provider == "anthropic_text":
api_key = api_key or litellm.anthropic_key or get_secret("ANTHROPIC_API_KEY")
# ai21
elif llm_provider == "ai21":
api_key = api_key or litellm.ai21_key or get_secret("AI211_API_KEY")
# aleph_alpha
elif llm_provider == "aleph_alpha":
api_key = (
api_key or litellm.aleph_alpha_key or get_secret("ALEPH_ALPHA_API_KEY")
)
# baseten
elif llm_provider == "baseten":
api_key = api_key or litellm.baseten_key or get_secret("BASETEN_API_KEY")
# cohere
elif llm_provider == "cohere" or llm_provider == "cohere_chat":
api_key = api_key or litellm.cohere_key or get_secret("COHERE_API_KEY")
# huggingface
elif llm_provider == "huggingface":
api_key = (
api_key or litellm.huggingface_key or get_secret("HUGGINGFACE_API_KEY")
)
# nlp_cloud
elif llm_provider == "nlp_cloud":
api_key = api_key or litellm.nlp_cloud_key or get_secret("NLP_CLOUD_API_KEY")
# replicate
elif llm_provider == "replicate":
api_key = api_key or litellm.replicate_key or get_secret("REPLICATE_API_KEY")
# together_ai
elif llm_provider == "together_ai":
api_key = (
api_key
or litellm.togetherai_api_key
or get_secret("TOGETHERAI_API_KEY")
or get_secret("TOGETHER_AI_TOKEN")
)
return api_key
def get_utc_datetime():
import datetime as dt
from datetime import datetime
if hasattr(dt, "UTC"):
return datetime.now(dt.UTC) # type: ignore
else:
return datetime.utcnow() # type: ignore
def get_max_tokens(model: str) -> Optional[int]:
"""
Get the maximum number of output tokens allowed for a given model.
Parameters:
model (str): The name of the model.
Returns:
int: The maximum number of tokens allowed for the given model.
Raises:
Exception: If the model is not mapped yet.
Example:
>>> get_max_tokens("gpt-4")
8192
"""
def _get_max_position_embeddings(model_name):
# Construct the URL for the config.json file
config_url = f"https://huggingface.co/{model_name}/raw/main/config.json"
try:
# Make the HTTP request to get the raw JSON file
response = litellm.module_level_client.get(config_url)
response.raise_for_status() # Raise an exception for bad responses (4xx or 5xx)
# Parse the JSON response
config_json = response.json()
# Extract and return the max_position_embeddings
max_position_embeddings = config_json.get("max_position_embeddings")
if max_position_embeddings is not None:
return max_position_embeddings
else:
return None
except Exception:
return None
try:
if model in litellm.model_cost:
if "max_output_tokens" in litellm.model_cost[model]:
return litellm.model_cost[model]["max_output_tokens"]
elif "max_tokens" in litellm.model_cost[model]:
return litellm.model_cost[model]["max_tokens"]
model, custom_llm_provider, _, _ = get_llm_provider(model=model)
if custom_llm_provider == "huggingface":
max_tokens = _get_max_position_embeddings(model_name=model)
return max_tokens
if model in litellm.model_cost: # check if extracted model is in model_list
if "max_output_tokens" in litellm.model_cost[model]:
return litellm.model_cost[model]["max_output_tokens"]
elif "max_tokens" in litellm.model_cost[model]:
return litellm.model_cost[model]["max_tokens"]
else:
raise Exception()
return None
except Exception:
raise Exception(
f"Model {model} isn't mapped yet. Add it here - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json"
)
def _strip_stable_vertex_version(model_name) -> str:
return re.sub(r"-\d+$", "", model_name)
def _strip_bedrock_region(model_name) -> str:
return litellm.AmazonConverseConfig()._get_base_model(model_name)
def _strip_openai_finetune_model_name(model_name: str) -> str:
"""
Strips the organization, custom suffix, and ID from an OpenAI fine-tuned model name.
input: ft:gpt-3.5-turbo:my-org:custom_suffix:id
output: ft:gpt-3.5-turbo
Args:
model_name (str): The full model name
Returns:
str: The stripped model name
"""
return re.sub(r"(:[^:]+){3}$", "", model_name)
def _strip_model_name(model: str, custom_llm_provider: Optional[str]) -> str:
if custom_llm_provider and custom_llm_provider == "bedrock":
strip_bedrock_region = _strip_bedrock_region(model_name=model)
return strip_bedrock_region
elif custom_llm_provider and (
custom_llm_provider == "vertex_ai" or custom_llm_provider == "gemini"
):
strip_version = _strip_stable_vertex_version(model_name=model)
return strip_version
elif custom_llm_provider and (custom_llm_provider == "databricks"):
strip_version = _strip_stable_vertex_version(model_name=model)
return strip_version
elif "ft:" in model:
strip_finetune = _strip_openai_finetune_model_name(model_name=model)
return strip_finetune
else:
return model
def _get_model_info_from_model_cost(key: str) -> dict:
return litellm.model_cost[key]
def _check_provider_match(model_info: dict, custom_llm_provider: Optional[str]) -> bool:
"""
Check if the model info provider matches the custom provider.
"""
if custom_llm_provider and (
"litellm_provider" in model_info
and model_info["litellm_provider"] != custom_llm_provider
):
if custom_llm_provider == "vertex_ai" and model_info[
"litellm_provider"
].startswith("vertex_ai"):
return True
elif custom_llm_provider == "fireworks_ai" and model_info[
"litellm_provider"
].startswith("fireworks_ai"):
return True
elif custom_llm_provider.startswith("bedrock") and model_info[
"litellm_provider"
].startswith("bedrock"):
return True
else:
return False
return True
from typing import TypedDict
class PotentialModelNamesAndCustomLLMProvider(TypedDict):
split_model: str
combined_model_name: str
stripped_model_name: str
combined_stripped_model_name: str
custom_llm_provider: str
def _get_potential_model_names(
model: str, custom_llm_provider: Optional[str]
) -> PotentialModelNamesAndCustomLLMProvider:
if custom_llm_provider is None:
# Get custom_llm_provider
try:
split_model, custom_llm_provider, _, _ = get_llm_provider(model=model)
except Exception:
split_model = model
combined_model_name = model
stripped_model_name = _strip_model_name(
model=model, custom_llm_provider=custom_llm_provider
)
combined_stripped_model_name = stripped_model_name
elif custom_llm_provider and model.startswith(
custom_llm_provider + "/"
): # handle case where custom_llm_provider is provided and model starts with custom_llm_provider
split_model = model.split("/", 1)[1]
combined_model_name = model
stripped_model_name = _strip_model_name(
model=split_model, custom_llm_provider=custom_llm_provider
)
combined_stripped_model_name = "{}/{}".format(
custom_llm_provider, stripped_model_name
)
else:
split_model = model
combined_model_name = "{}/{}".format(custom_llm_provider, model)
stripped_model_name = _strip_model_name(
model=model, custom_llm_provider=custom_llm_provider
)
combined_stripped_model_name = "{}/{}".format(
custom_llm_provider,
stripped_model_name,
)
return PotentialModelNamesAndCustomLLMProvider(
split_model=split_model,
combined_model_name=combined_model_name,
stripped_model_name=stripped_model_name,
combined_stripped_model_name=combined_stripped_model_name,
custom_llm_provider=cast(str, custom_llm_provider),
)
def _get_max_position_embeddings(model_name: str) -> Optional[int]:
# Construct the URL for the config.json file
config_url = f"https://huggingface.co/{model_name}/raw/main/config.json"
try:
# Make the HTTP request to get the raw JSON file
response = litellm.module_level_client.get(config_url)
response.raise_for_status() # Raise an exception for bad responses (4xx or 5xx)
# Parse the JSON response
config_json = response.json()
# Extract and return the max_position_embeddings
max_position_embeddings = config_json.get("max_position_embeddings")
if max_position_embeddings is not None:
return max_position_embeddings
else:
return None
except Exception:
return None
@lru_cache_wrapper(maxsize=16)
def _cached_get_model_info_helper(
model: str, custom_llm_provider: Optional[str]
) -> ModelInfoBase:
"""
_get_model_info_helper wrapped with lru_cache
Speed Optimization to hit high RPS
"""
return _get_model_info_helper(model=model, custom_llm_provider=custom_llm_provider)
def get_provider_info(
model: str, custom_llm_provider: Optional[str]
) -> Optional[ProviderSpecificModelInfo]:
## PROVIDER-SPECIFIC INFORMATION
# if custom_llm_provider == "predibase":
# _model_info["supports_response_schema"] = True
provider_config: Optional[BaseLLMModelInfo] = None
if custom_llm_provider and custom_llm_provider in LlmProvidersSet:
# Check if the provider string exists in LlmProviders enum
provider_config = ProviderConfigManager.get_provider_model_info(
model=model, provider=LlmProviders(custom_llm_provider)
)
model_info: Optional[ProviderSpecificModelInfo] = None
if provider_config:
model_info = provider_config.get_provider_info(model=model)
return model_info
def _get_model_info_helper( # noqa: PLR0915
model: str, custom_llm_provider: Optional[str] = None
) -> ModelInfoBase:
"""
Helper for 'get_model_info'. Separated out to avoid infinite loop caused by returning 'supported_openai_param's
"""
try:
azure_llms = {**litellm.azure_llms, **litellm.azure_embedding_models}
if model in azure_llms:
model = azure_llms[model]
if custom_llm_provider is not None and custom_llm_provider == "vertex_ai_beta":
custom_llm_provider = "vertex_ai"
if custom_llm_provider is not None and custom_llm_provider == "vertex_ai":
if "meta/" + model in litellm.vertex_llama3_models:
model = "meta/" + model
elif model + "@latest" in litellm.vertex_mistral_models:
model = model + "@latest"
elif model + "@latest" in litellm.vertex_ai_ai21_models:
model = model + "@latest"
##########################
potential_model_names = _get_potential_model_names(
model=model, custom_llm_provider=custom_llm_provider
)
verbose_logger.debug(
f"checking potential_model_names in litellm.model_cost: {potential_model_names}"
)
combined_model_name = potential_model_names["combined_model_name"]
stripped_model_name = potential_model_names["stripped_model_name"]
combined_stripped_model_name = potential_model_names[
"combined_stripped_model_name"
]
split_model = potential_model_names["split_model"]
custom_llm_provider = potential_model_names["custom_llm_provider"]
#########################
if custom_llm_provider == "huggingface":
max_tokens = _get_max_position_embeddings(model_name=model)
return ModelInfoBase(
key=model,
max_tokens=max_tokens, # type: ignore
max_input_tokens=None,
max_output_tokens=None,
input_cost_per_token=0,
output_cost_per_token=0,
litellm_provider="huggingface",
mode="chat",
supports_system_messages=None,
supports_response_schema=None,
supports_function_calling=None,
supports_tool_choice=None,
supports_assistant_prefill=None,
supports_prompt_caching=None,
supports_pdf_input=None,
)
elif custom_llm_provider == "ollama" or custom_llm_provider == "ollama_chat":
return litellm.OllamaConfig().get_model_info(model)
else:
"""
Check if: (in order of specificity)
1. 'custom_llm_provider/model' in litellm.model_cost. Checks "groq/llama3-8b-8192" if model="llama3-8b-8192" and custom_llm_provider="groq"
2. 'model' in litellm.model_cost. Checks "gemini-1.5-pro-002" in litellm.model_cost if model="gemini-1.5-pro-002" and custom_llm_provider=None
3. 'combined_stripped_model_name' in litellm.model_cost. Checks if 'gemini/gemini-1.5-flash' in model map, if 'gemini/gemini-1.5-flash-001' given.
4. 'stripped_model_name' in litellm.model_cost. Checks if 'ft:gpt-3.5-turbo' in model map, if 'ft:gpt-3.5-turbo:my-org:custom_suffix:id' given.
5. 'split_model' in litellm.model_cost. Checks "llama3-8b-8192" in litellm.model_cost if model="groq/llama3-8b-8192"
"""
_model_info: Optional[Dict[str, Any]] = None
key: Optional[str] = None
if combined_model_name in litellm.model_cost:
key = combined_model_name
_model_info = _get_model_info_from_model_cost(key=key)
if not _check_provider_match(
model_info=_model_info, custom_llm_provider=custom_llm_provider
):
_model_info = None
if _model_info is None and model in litellm.model_cost:
key = model
_model_info = _get_model_info_from_model_cost(key=key)
if not _check_provider_match(
model_info=_model_info, custom_llm_provider=custom_llm_provider
):
_model_info = None
if (
_model_info is None
and combined_stripped_model_name in litellm.model_cost
):
key = combined_stripped_model_name
_model_info = _get_model_info_from_model_cost(key=key)
if not _check_provider_match(
model_info=_model_info, custom_llm_provider=custom_llm_provider
):
_model_info = None
if _model_info is None and stripped_model_name in litellm.model_cost:
key = stripped_model_name
_model_info = _get_model_info_from_model_cost(key=key)
if not _check_provider_match(
model_info=_model_info, custom_llm_provider=custom_llm_provider
):
_model_info = None
if _model_info is None and split_model in litellm.model_cost:
key = split_model
_model_info = _get_model_info_from_model_cost(key=key)
if not _check_provider_match(
model_info=_model_info, custom_llm_provider=custom_llm_provider
):
_model_info = None
if _model_info is None or key is None:
raise ValueError(
"This model isn't mapped yet. Add it here - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json"
)
_input_cost_per_token: Optional[float] = _model_info.get(
"input_cost_per_token"
)
if _input_cost_per_token is None:
# default value to 0, be noisy about this
verbose_logger.debug(
"model={}, custom_llm_provider={} has no input_cost_per_token in model_cost_map. Defaulting to 0.".format(
model, custom_llm_provider
)
)
_input_cost_per_token = 0
_output_cost_per_token: Optional[float] = _model_info.get(
"output_cost_per_token"
)
if _output_cost_per_token is None:
# default value to 0, be noisy about this
verbose_logger.debug(
"model={}, custom_llm_provider={} has no output_cost_per_token in model_cost_map. Defaulting to 0.".format(
model, custom_llm_provider
)
)
_output_cost_per_token = 0
return ModelInfoBase(
key=key,
max_tokens=_model_info.get("max_tokens", None),
max_input_tokens=_model_info.get("max_input_tokens", None),
max_output_tokens=_model_info.get("max_output_tokens", None),
input_cost_per_token=_input_cost_per_token,
cache_creation_input_token_cost=_model_info.get(
"cache_creation_input_token_cost", None
),
cache_read_input_token_cost=_model_info.get(
"cache_read_input_token_cost", None
),
input_cost_per_character=_model_info.get(
"input_cost_per_character", None
),
input_cost_per_token_above_128k_tokens=_model_info.get(
"input_cost_per_token_above_128k_tokens", None
),
input_cost_per_query=_model_info.get("input_cost_per_query", None),
input_cost_per_second=_model_info.get("input_cost_per_second", None),
input_cost_per_audio_token=_model_info.get(
"input_cost_per_audio_token", None
),
output_cost_per_token=_output_cost_per_token,
output_cost_per_audio_token=_model_info.get(
"output_cost_per_audio_token", None
),
output_cost_per_character=_model_info.get(
"output_cost_per_character", None
),
output_cost_per_token_above_128k_tokens=_model_info.get(
"output_cost_per_token_above_128k_tokens", None
),
output_cost_per_character_above_128k_tokens=_model_info.get(
"output_cost_per_character_above_128k_tokens", None
),
output_cost_per_second=_model_info.get("output_cost_per_second", None),
output_cost_per_image=_model_info.get("output_cost_per_image", None),
output_vector_size=_model_info.get("output_vector_size", None),
litellm_provider=_model_info.get(
"litellm_provider", custom_llm_provider
),
mode=_model_info.get("mode"), # type: ignore
supports_system_messages=_model_info.get(
"supports_system_messages", None
),
supports_response_schema=_model_info.get(
"supports_response_schema", None
),
supports_vision=_model_info.get("supports_vision", False),
supports_function_calling=_model_info.get(
"supports_function_calling", False
),
supports_tool_choice=_model_info.get("supports_tool_choice", False),
supports_assistant_prefill=_model_info.get(
"supports_assistant_prefill", False
),
supports_prompt_caching=_model_info.get(
"supports_prompt_caching", False
),
supports_audio_input=_model_info.get("supports_audio_input", False),
supports_audio_output=_model_info.get("supports_audio_output", False),
supports_pdf_input=_model_info.get("supports_pdf_input", False),
supports_embedding_image_input=_model_info.get(
"supports_embedding_image_input", False
),
supports_native_streaming=_model_info.get(
"supports_native_streaming", None
),
tpm=_model_info.get("tpm", None),
rpm=_model_info.get("rpm", None),
)
except Exception as e:
verbose_logger.debug(f"Error getting model info: {e}")
if "OllamaError" in str(e):
raise e
raise Exception(
"This model isn't mapped yet. model={}, custom_llm_provider={}. Add it here - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json.".format(
model, custom_llm_provider
)
)
def get_model_info(model: str, custom_llm_provider: Optional[str] = None) -> ModelInfo:
"""
Get a dict for the maximum tokens (context window), input_cost_per_token, output_cost_per_token for a given model.
Parameters:
- model (str): The name of the model.
- custom_llm_provider (str | null): the provider used for the model. If provided, used to check if the litellm model info is for that provider.
Returns:
dict: A dictionary containing the following information:
key: Required[str] # the key in litellm.model_cost which is returned
max_tokens: Required[Optional[int]]
max_input_tokens: Required[Optional[int]]
max_output_tokens: Required[Optional[int]]
input_cost_per_token: Required[float]
input_cost_per_character: Optional[float] # only for vertex ai models
input_cost_per_token_above_128k_tokens: Optional[float] # only for vertex ai models
input_cost_per_character_above_128k_tokens: Optional[
float
] # only for vertex ai models
input_cost_per_query: Optional[float] # only for rerank models
input_cost_per_image: Optional[float] # only for vertex ai models
input_cost_per_audio_token: Optional[float]
input_cost_per_audio_per_second: Optional[float] # only for vertex ai models
input_cost_per_video_per_second: Optional[float] # only for vertex ai models
output_cost_per_token: Required[float]
output_cost_per_audio_token: Optional[float]
output_cost_per_character: Optional[float] # only for vertex ai models
output_cost_per_token_above_128k_tokens: Optional[
float
] # only for vertex ai models
output_cost_per_character_above_128k_tokens: Optional[
float
] # only for vertex ai models
output_cost_per_image: Optional[float]
output_vector_size: Optional[int]
output_cost_per_video_per_second: Optional[float] # only for vertex ai models
output_cost_per_audio_per_second: Optional[float] # only for vertex ai models
litellm_provider: Required[str]
mode: Required[
Literal[
"completion", "embedding", "image_generation", "chat", "audio_transcription"
]
]
supported_openai_params: Required[Optional[List[str]]]
supports_system_messages: Optional[bool]
supports_response_schema: Optional[bool]
supports_vision: Optional[bool]
supports_function_calling: Optional[bool]
supports_tool_choice: Optional[bool]
supports_prompt_caching: Optional[bool]
supports_audio_input: Optional[bool]
supports_audio_output: Optional[bool]
supports_pdf_input: Optional[bool]
Raises:
Exception: If the model is not mapped yet.
Example:
>>> get_model_info("gpt-4")
{
"max_tokens": 8192,
"input_cost_per_token": 0.00003,
"output_cost_per_token": 0.00006,
"litellm_provider": "openai",
"mode": "chat",
"supported_openai_params": ["temperature", "max_tokens", "top_p", "frequency_penalty", "presence_penalty"]
}
"""
supported_openai_params = litellm.get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
)
_model_info = _get_model_info_helper(
model=model,
custom_llm_provider=custom_llm_provider,
)
verbose_logger.debug(f"model_info: {_model_info}")
returned_model_info = ModelInfo(
**_model_info, supported_openai_params=supported_openai_params
)
return returned_model_info
def json_schema_type(python_type_name: str):
"""Converts standard python types to json schema types
Parameters
----------
python_type_name : str
__name__ of type
Returns
-------
str
a standard JSON schema type, "string" if not recognized.
"""
python_to_json_schema_types = {
str.__name__: "string",
int.__name__: "integer",
float.__name__: "number",
bool.__name__: "boolean",
list.__name__: "array",
dict.__name__: "object",
"NoneType": "null",
}
return python_to_json_schema_types.get(python_type_name, "string")
def function_to_dict(input_function): # noqa: C901
"""Using type hints and numpy-styled docstring,
produce a dictionnary usable for OpenAI function calling
Parameters
----------
input_function : function
A function with a numpy-style docstring
Returns
-------
dictionnary
A dictionnary to add to the list passed to `functions` parameter of `litellm.completion`
"""
# Get function name and docstring
try:
import inspect
from ast import literal_eval
from numpydoc.docscrape import NumpyDocString
except Exception as e:
raise e
name = input_function.__name__
docstring = inspect.getdoc(input_function)
numpydoc = NumpyDocString(docstring)
description = "\n".join([s.strip() for s in numpydoc["Summary"]])
# Get function parameters and their types from annotations and docstring
parameters = {}
required_params = []
param_info = inspect.signature(input_function).parameters
for param_name, param in param_info.items():
if hasattr(param, "annotation"):
param_type = json_schema_type(param.annotation.__name__)
else:
param_type = None
param_description = None
param_enum = None
# Try to extract param description from docstring using numpydoc
for param_data in numpydoc["Parameters"]:
if param_data.name == param_name:
if hasattr(param_data, "type"):
# replace type from docstring rather than annotation
param_type = param_data.type
if "optional" in param_type:
param_type = param_type.split(",")[0]
elif "{" in param_type:
# may represent a set of acceptable values
# translating as enum for function calling
try:
param_enum = str(list(literal_eval(param_type)))
param_type = "string"
except Exception:
pass
param_type = json_schema_type(param_type)
param_description = "\n".join([s.strip() for s in param_data.desc])
param_dict = {
"type": param_type,
"description": param_description,
"enum": param_enum,
}
parameters[param_name] = dict(
[(k, v) for k, v in param_dict.items() if isinstance(v, str)]
)
# Check if the parameter has no default value (i.e., it's required)
if param.default == param.empty:
required_params.append(param_name)
# Create the dictionary
result = {
"name": name,
"description": description,
"parameters": {
"type": "object",
"properties": parameters,
},
}
# Add "required" key if there are required parameters
if required_params:
result["parameters"]["required"] = required_params
return result
def modify_url(original_url, new_path):
url = httpx.URL(original_url)
modified_url = url.copy_with(path=new_path)
return str(modified_url)
def load_test_model(
model: str,
custom_llm_provider: str = "",
api_base: str = "",
prompt: str = "",
num_calls: int = 0,
force_timeout: int = 0,
):
test_prompt = "Hey, how's it going"
test_calls = 100
if prompt:
test_prompt = prompt
if num_calls:
test_calls = num_calls
messages = [[{"role": "user", "content": test_prompt}] for _ in range(test_calls)]
start_time = time.time()
try:
litellm.batch_completion(
model=model,
messages=messages,
custom_llm_provider=custom_llm_provider,
api_base=api_base,
force_timeout=force_timeout,
)
end_time = time.time()
response_time = end_time - start_time
return {
"total_response_time": response_time,
"calls_made": 100,
"status": "success",
"exception": None,
}
except Exception as e:
end_time = time.time()
response_time = end_time - start_time
return {
"total_response_time": response_time,
"calls_made": 100,
"status": "failed",
"exception": e,
}
def get_provider_fields(custom_llm_provider: str) -> List[ProviderField]:
"""Return the fields required for each provider"""
if custom_llm_provider == "databricks":
return litellm.DatabricksConfig().get_required_params()
elif custom_llm_provider == "ollama":
return litellm.OllamaConfig().get_required_params()
elif custom_llm_provider == "azure_ai":
return litellm.AzureAIStudioConfig().get_required_params()
else:
return []
def create_proxy_transport_and_mounts():
proxies = {
key: None if url is None else Proxy(url=url)
for key, url in get_environment_proxies().items()
}
sync_proxy_mounts = {}
async_proxy_mounts = {}
# Retrieve NO_PROXY environment variable
no_proxy = os.getenv("NO_PROXY", None)
no_proxy_urls = no_proxy.split(",") if no_proxy else []
for key, proxy in proxies.items():
if proxy is None:
sync_proxy_mounts[key] = httpx.HTTPTransport()
async_proxy_mounts[key] = httpx.AsyncHTTPTransport()
else:
sync_proxy_mounts[key] = httpx.HTTPTransport(proxy=proxy)
async_proxy_mounts[key] = httpx.AsyncHTTPTransport(proxy=proxy)
for url in no_proxy_urls:
sync_proxy_mounts[url] = httpx.HTTPTransport()
async_proxy_mounts[url] = httpx.AsyncHTTPTransport()
return sync_proxy_mounts, async_proxy_mounts
def validate_environment( # noqa: PLR0915
model: Optional[str] = None,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
) -> dict:
"""
Checks if the environment variables are valid for the given model.
Args:
model (Optional[str]): The name of the model. Defaults to None.
api_key (Optional[str]): If the user passed in an api key, of their own.
Returns:
dict: A dictionary containing the following keys:
- keys_in_environment (bool): True if all the required keys are present in the environment, False otherwise.
- missing_keys (List[str]): A list of missing keys in the environment.
"""
keys_in_environment = False
missing_keys: List[str] = []
if model is None:
return {
"keys_in_environment": keys_in_environment,
"missing_keys": missing_keys,
}
## EXTRACT LLM PROVIDER - if model name provided
try:
_, custom_llm_provider, _, _ = get_llm_provider(model=model)
except Exception:
custom_llm_provider = None
if custom_llm_provider:
if custom_llm_provider == "openai":
if "OPENAI_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("OPENAI_API_KEY")
elif custom_llm_provider == "azure":
if (
"AZURE_API_BASE" in os.environ
and "AZURE_API_VERSION" in os.environ
and "AZURE_API_KEY" in os.environ
):
keys_in_environment = True
else:
missing_keys.extend(
["AZURE_API_BASE", "AZURE_API_VERSION", "AZURE_API_KEY"]
)
elif custom_llm_provider == "anthropic":
if "ANTHROPIC_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("ANTHROPIC_API_KEY")
elif custom_llm_provider == "cohere":
if "COHERE_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("COHERE_API_KEY")
elif custom_llm_provider == "replicate":
if "REPLICATE_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("REPLICATE_API_KEY")
elif custom_llm_provider == "openrouter":
if "OPENROUTER_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("OPENROUTER_API_KEY")
elif custom_llm_provider == "vertex_ai":
if "VERTEXAI_PROJECT" in os.environ and "VERTEXAI_LOCATION" in os.environ:
keys_in_environment = True
else:
missing_keys.extend(["VERTEXAI_PROJECT", "VERTEXAI_LOCATION"])
elif custom_llm_provider == "huggingface":
if "HUGGINGFACE_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("HUGGINGFACE_API_KEY")
elif custom_llm_provider == "ai21":
if "AI21_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("AI21_API_KEY")
elif custom_llm_provider == "together_ai":
if "TOGETHERAI_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("TOGETHERAI_API_KEY")
elif custom_llm_provider == "aleph_alpha":
if "ALEPH_ALPHA_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("ALEPH_ALPHA_API_KEY")
elif custom_llm_provider == "baseten":
if "BASETEN_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("BASETEN_API_KEY")
elif custom_llm_provider == "nlp_cloud":
if "NLP_CLOUD_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("NLP_CLOUD_API_KEY")
elif custom_llm_provider == "bedrock" or custom_llm_provider == "sagemaker":
if (
"AWS_ACCESS_KEY_ID" in os.environ
and "AWS_SECRET_ACCESS_KEY" in os.environ
):
keys_in_environment = True
else:
missing_keys.append("AWS_ACCESS_KEY_ID")
missing_keys.append("AWS_SECRET_ACCESS_KEY")
elif custom_llm_provider in ["ollama", "ollama_chat"]:
if "OLLAMA_API_BASE" in os.environ:
keys_in_environment = True
else:
missing_keys.append("OLLAMA_API_BASE")
elif custom_llm_provider == "anyscale":
if "ANYSCALE_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("ANYSCALE_API_KEY")
elif custom_llm_provider == "deepinfra":
if "DEEPINFRA_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("DEEPINFRA_API_KEY")
elif custom_llm_provider == "gemini":
if "GEMINI_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("GEMINI_API_KEY")
elif custom_llm_provider == "groq":
if "GROQ_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("GROQ_API_KEY")
elif custom_llm_provider == "nvidia_nim":
if "NVIDIA_NIM_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("NVIDIA_NIM_API_KEY")
elif custom_llm_provider == "cerebras":
if "CEREBRAS_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("CEREBRAS_API_KEY")
elif custom_llm_provider == "xai":
if "XAI_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("XAI_API_KEY")
elif custom_llm_provider == "ai21_chat":
if "AI21_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("AI21_API_KEY")
elif custom_llm_provider == "volcengine":
if "VOLCENGINE_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("VOLCENGINE_API_KEY")
elif (
custom_llm_provider == "codestral"
or custom_llm_provider == "text-completion-codestral"
):
if "CODESTRAL_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("CODESTRAL_API_KEY")
elif custom_llm_provider == "deepseek":
if "DEEPSEEK_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("DEEPSEEK_API_KEY")
elif custom_llm_provider == "mistral":
if "MISTRAL_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("MISTRAL_API_KEY")
elif custom_llm_provider == "palm":
if "PALM_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("PALM_API_KEY")
elif custom_llm_provider == "perplexity":
if "PERPLEXITYAI_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("PERPLEXITYAI_API_KEY")
elif custom_llm_provider == "voyage":
if "VOYAGE_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("VOYAGE_API_KEY")
elif custom_llm_provider == "fireworks_ai":
if (
"FIREWORKS_AI_API_KEY" in os.environ
or "FIREWORKS_API_KEY" in os.environ
or "FIREWORKSAI_API_KEY" in os.environ
or "FIREWORKS_AI_TOKEN" in os.environ
):
keys_in_environment = True
else:
missing_keys.append("FIREWORKS_AI_API_KEY")
elif custom_llm_provider == "cloudflare":
if "CLOUDFLARE_API_KEY" in os.environ and (
"CLOUDFLARE_ACCOUNT_ID" in os.environ
or "CLOUDFLARE_API_BASE" in os.environ
):
keys_in_environment = True
else:
missing_keys.append("CLOUDFLARE_API_KEY")
missing_keys.append("CLOUDFLARE_API_BASE")
else:
## openai - chatcompletion + text completion
if (
model in litellm.open_ai_chat_completion_models
or model in litellm.open_ai_text_completion_models
or model in litellm.open_ai_embedding_models
or model in litellm.openai_image_generation_models
):
if "OPENAI_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("OPENAI_API_KEY")
## anthropic
elif model in litellm.anthropic_models:
if "ANTHROPIC_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("ANTHROPIC_API_KEY")
## cohere
elif model in litellm.cohere_models:
if "COHERE_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("COHERE_API_KEY")
## replicate
elif model in litellm.replicate_models:
if "REPLICATE_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("REPLICATE_API_KEY")
## openrouter
elif model in litellm.openrouter_models:
if "OPENROUTER_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("OPENROUTER_API_KEY")
## vertex - text + chat models
elif (
model in litellm.vertex_chat_models
or model in litellm.vertex_text_models
or model in litellm.models_by_provider["vertex_ai"]
):
if "VERTEXAI_PROJECT" in os.environ and "VERTEXAI_LOCATION" in os.environ:
keys_in_environment = True
else:
missing_keys.extend(["VERTEXAI_PROJECT", "VERTEXAI_LOCATION"])
## huggingface
elif model in litellm.huggingface_models:
if "HUGGINGFACE_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("HUGGINGFACE_API_KEY")
## ai21
elif model in litellm.ai21_models:
if "AI21_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("AI21_API_KEY")
## together_ai
elif model in litellm.together_ai_models:
if "TOGETHERAI_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("TOGETHERAI_API_KEY")
## aleph_alpha
elif model in litellm.aleph_alpha_models:
if "ALEPH_ALPHA_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("ALEPH_ALPHA_API_KEY")
## baseten
elif model in litellm.baseten_models:
if "BASETEN_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("BASETEN_API_KEY")
## nlp_cloud
elif model in litellm.nlp_cloud_models:
if "NLP_CLOUD_API_KEY" in os.environ:
keys_in_environment = True
else:
missing_keys.append("NLP_CLOUD_API_KEY")
if api_key is not None:
new_missing_keys = []
for key in missing_keys:
if "api_key" not in key.lower():
new_missing_keys.append(key)
missing_keys = new_missing_keys
if api_base is not None:
new_missing_keys = []
for key in missing_keys:
if "api_base" not in key.lower():
new_missing_keys.append(key)
missing_keys = new_missing_keys
if len(missing_keys) == 0: # no missing keys
keys_in_environment = True
return {"keys_in_environment": keys_in_environment, "missing_keys": missing_keys}
def acreate(*args, **kwargs): ## Thin client to handle the acreate langchain call
return litellm.acompletion(*args, **kwargs)
def prompt_token_calculator(model, messages):
# use tiktoken or anthropic's tokenizer depending on the model
text = " ".join(message["content"] for message in messages)
num_tokens = 0
if "claude" in model:
try:
import anthropic
except Exception:
Exception("Anthropic import failed please run `pip install anthropic`")
from anthropic import AI_PROMPT, HUMAN_PROMPT, Anthropic
anthropic_obj = Anthropic()
num_tokens = anthropic_obj.count_tokens(text)
else:
num_tokens = len(encoding.encode(text))
return num_tokens
def valid_model(model):
try:
# for a given model name, check if the user has the right permissions to access the model
if (
model in litellm.open_ai_chat_completion_models
or model in litellm.open_ai_text_completion_models
):
openai.models.retrieve(model)
else:
messages = [{"role": "user", "content": "Hello World"}]
litellm.completion(model=model, messages=messages)
except Exception:
raise BadRequestError(message="", model=model, llm_provider="")
def check_valid_key(model: str, api_key: str):
"""
Checks if a given API key is valid for a specific model by making a litellm.completion call with max_tokens=10
Args:
model (str): The name of the model to check the API key against.
api_key (str): The API key to be checked.
Returns:
bool: True if the API key is valid for the model, False otherwise.
"""
messages = [{"role": "user", "content": "Hey, how's it going?"}]
try:
litellm.completion(
model=model, messages=messages, api_key=api_key, max_tokens=10
)
return True
except AuthenticationError:
return False
except Exception:
return False
def _should_retry(status_code: int):
"""
Retries on 408, 409, 429 and 500 errors.
Any client error in the 400-499 range that isn't explicitly handled (such as 400 Bad Request, 401 Unauthorized, 403 Forbidden, 404 Not Found, etc.) would not trigger a retry.
Reimplementation of openai's should retry logic, since that one can't be imported.
https://github.com/openai/openai-python/blob/af67cfab4210d8e497c05390ce14f39105c77519/src/openai/_base_client.py#L639
"""
# If the server explicitly says whether or not to retry, obey.
# Retry on request timeouts.
if status_code == 408:
return True
# Retry on lock timeouts.
if status_code == 409:
return True
# Retry on rate limits.
if status_code == 429:
return True
# Retry internal errors.
if status_code >= 500:
return True
return False
def _get_retry_after_from_exception_header(
response_headers: Optional[httpx.Headers] = None,
):
"""
Reimplementation of openai's calculate retry after, since that one can't be imported.
https://github.com/openai/openai-python/blob/af67cfab4210d8e497c05390ce14f39105c77519/src/openai/_base_client.py#L631
"""
try:
import email # openai import
# About the Retry-After header: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Retry-After
#
# <http-date>". See https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Retry-After#syntax for
# details.
if response_headers is not None:
retry_header = response_headers.get("retry-after")
try:
retry_after = int(retry_header)
except Exception:
retry_date_tuple = email.utils.parsedate_tz(retry_header) # type: ignore
if retry_date_tuple is None:
retry_after = -1
else:
retry_date = email.utils.mktime_tz(retry_date_tuple) # type: ignore
retry_after = int(retry_date - time.time())
else:
retry_after = -1
return retry_after
except Exception:
retry_after = -1
def _calculate_retry_after(
remaining_retries: int,
max_retries: int,
response_headers: Optional[httpx.Headers] = None,
min_timeout: int = 0,
) -> Union[float, int]:
retry_after = _get_retry_after_from_exception_header(response_headers)
# If the API asks us to wait a certain amount of time (and it's a reasonable amount), just do what it says.
if retry_after is not None and 0 < retry_after <= 60:
return retry_after
initial_retry_delay = 0.5
max_retry_delay = 8.0
nb_retries = max_retries - remaining_retries
# Apply exponential backoff, but not more than the max.
sleep_seconds = min(initial_retry_delay * pow(2.0, nb_retries), max_retry_delay)
# Apply some jitter, plus-or-minus half a second.
jitter = 1 - 0.25 * random.random()
timeout = sleep_seconds * jitter
return timeout if timeout >= min_timeout else min_timeout
# custom prompt helper function
def register_prompt_template(
model: str,
roles: dict,
initial_prompt_value: str = "",
final_prompt_value: str = "",
):
"""
Register a prompt template to follow your custom format for a given model
Args:
model (str): The name of the model.
roles (dict): A dictionary mapping roles to their respective prompt values.
initial_prompt_value (str, optional): The initial prompt value. Defaults to "".
final_prompt_value (str, optional): The final prompt value. Defaults to "".
Returns:
dict: The updated custom prompt dictionary.
Example usage:
```
import litellm
litellm.register_prompt_template(
model="llama-2",
initial_prompt_value="You are a good assistant" # [OPTIONAL]
roles={
"system": {
"pre_message": "[INST] <<SYS>>\n", # [OPTIONAL]
"post_message": "\n<</SYS>>\n [/INST]\n" # [OPTIONAL]
},
"user": {
"pre_message": "[INST] ", # [OPTIONAL]
"post_message": " [/INST]" # [OPTIONAL]
},
"assistant": {
"pre_message": "\n" # [OPTIONAL]
"post_message": "\n" # [OPTIONAL]
}
}
final_prompt_value="Now answer as best you can:" # [OPTIONAL]
)
```
"""
model = get_llm_provider(model=model)[0]
litellm.custom_prompt_dict[model] = {
"roles": roles,
"initial_prompt_value": initial_prompt_value,
"final_prompt_value": final_prompt_value,
}
return litellm.custom_prompt_dict
class TextCompletionStreamWrapper:
def __init__(
self,
completion_stream,
model,
stream_options: Optional[dict] = None,
custom_llm_provider: Optional[str] = None,
):
self.completion_stream = completion_stream
self.model = model
self.stream_options = stream_options
self.custom_llm_provider = custom_llm_provider
def __iter__(self):
return self
def __aiter__(self):
return self
def convert_to_text_completion_object(self, chunk: ModelResponse):
try:
response = TextCompletionResponse()
response["id"] = chunk.get("id", None)
response["object"] = "text_completion"
response["created"] = chunk.get("created", None)
response["model"] = chunk.get("model", None)
text_choices = TextChoices()
if isinstance(
chunk, Choices
): # chunk should always be of type StreamingChoices
raise Exception
text_choices["text"] = chunk["choices"][0]["delta"]["content"]
text_choices["index"] = chunk["choices"][0]["index"]
text_choices["finish_reason"] = chunk["choices"][0]["finish_reason"]
response["choices"] = [text_choices]
# only pass usage when stream_options["include_usage"] is True
if (
self.stream_options
and self.stream_options.get("include_usage", False) is True
):
response["usage"] = chunk.get("usage", None)
return response
except Exception as e:
raise Exception(
f"Error occurred converting to text completion object - chunk: {chunk}; Error: {str(e)}"
)
def __next__(self):
# model_response = ModelResponse(stream=True, model=self.model)
TextCompletionResponse()
try:
for chunk in self.completion_stream:
if chunk == "None" or chunk is None:
raise Exception
processed_chunk = self.convert_to_text_completion_object(chunk=chunk)
return processed_chunk
raise StopIteration
except StopIteration:
raise StopIteration
except Exception as e:
raise exception_type(
model=self.model,
custom_llm_provider=self.custom_llm_provider or "",
original_exception=e,
completion_kwargs={},
extra_kwargs={},
)
async def __anext__(self):
try:
async for chunk in self.completion_stream:
if chunk == "None" or chunk is None:
raise Exception
processed_chunk = self.convert_to_text_completion_object(chunk=chunk)
return processed_chunk
raise StopIteration
except StopIteration:
raise StopAsyncIteration
def mock_completion_streaming_obj(
model_response, mock_response, model, n: Optional[int] = None
):
if isinstance(mock_response, litellm.MockException):
raise mock_response
for i in range(0, len(mock_response), 3):
completion_obj = Delta(role="assistant", content=mock_response[i : i + 3])
if n is None:
model_response.choices[0].delta = completion_obj
else:
_all_choices = []
for j in range(n):
_streaming_choice = litellm.utils.StreamingChoices(
index=j,
delta=litellm.utils.Delta(
role="assistant", content=mock_response[i : i + 3]
),
)
_all_choices.append(_streaming_choice)
model_response.choices = _all_choices
yield model_response
async def async_mock_completion_streaming_obj(
model_response, mock_response, model, n: Optional[int] = None
):
if isinstance(mock_response, litellm.MockException):
raise mock_response
for i in range(0, len(mock_response), 3):
completion_obj = Delta(role="assistant", content=mock_response[i : i + 3])
if n is None:
model_response.choices[0].delta = completion_obj
else:
_all_choices = []
for j in range(n):
_streaming_choice = litellm.utils.StreamingChoices(
index=j,
delta=litellm.utils.Delta(
role="assistant", content=mock_response[i : i + 3]
),
)
_all_choices.append(_streaming_choice)
model_response.choices = _all_choices
yield model_response
########## Reading Config File ############################
def read_config_args(config_path) -> dict:
try:
import os
os.getcwd()
with open(config_path, "r") as config_file:
config = json.load(config_file)
# read keys/ values from config file and return them
return config
except Exception as e:
raise e
########## experimental completion variants ############################
def process_system_message(system_message, max_tokens, model):
system_message_event = {"role": "system", "content": system_message}
system_message_tokens = get_token_count([system_message_event], model)
if system_message_tokens > max_tokens:
print_verbose(
"`tokentrimmer`: Warning, system message exceeds token limit. Trimming..."
)
# shorten system message to fit within max_tokens
new_system_message = shorten_message_to_fit_limit(
system_message_event, max_tokens, model
)
system_message_tokens = get_token_count([new_system_message], model)
return system_message_event, max_tokens - system_message_tokens
def process_messages(messages, max_tokens, model):
# Process messages from older to more recent
messages = messages[::-1]
final_messages = []
for message in messages:
used_tokens = get_token_count(final_messages, model)
available_tokens = max_tokens - used_tokens
if available_tokens <= 3:
break
final_messages = attempt_message_addition(
final_messages=final_messages,
message=message,
available_tokens=available_tokens,
max_tokens=max_tokens,
model=model,
)
return final_messages
def attempt_message_addition(
final_messages, message, available_tokens, max_tokens, model
):
temp_messages = [message] + final_messages
temp_message_tokens = get_token_count(messages=temp_messages, model=model)
if temp_message_tokens <= max_tokens:
return temp_messages
# if temp_message_tokens > max_tokens, try shortening temp_messages
elif "function_call" not in message:
# fit updated_message to be within temp_message_tokens - max_tokens (aka the amount temp_message_tokens is greate than max_tokens)
updated_message = shorten_message_to_fit_limit(message, available_tokens, model)
if can_add_message(updated_message, final_messages, max_tokens, model):
return [updated_message] + final_messages
return final_messages
def can_add_message(message, messages, max_tokens, model):
if get_token_count(messages + [message], model) <= max_tokens:
return True
return False
def get_token_count(messages, model):
return token_counter(model=model, messages=messages)
def shorten_message_to_fit_limit(message, tokens_needed, model: Optional[str]):
"""
Shorten a message to fit within a token limit by removing characters from the middle.
"""
# For OpenAI models, even blank messages cost 7 token,
# and if the buffer is less than 3, the while loop will never end,
# hence the value 10.
if model is not None and "gpt" in model and tokens_needed <= 10:
return message
content = message["content"]
while True:
total_tokens = get_token_count([message], model)
if total_tokens <= tokens_needed:
break
ratio = (tokens_needed) / total_tokens
new_length = int(len(content) * ratio) - 1
new_length = max(0, new_length)
half_length = new_length // 2
left_half = content[:half_length]
right_half = content[-half_length:]
trimmed_content = left_half + ".." + right_half
message["content"] = trimmed_content
content = trimmed_content
return message
# LiteLLM token trimmer
# this code is borrowed from https://github.com/KillianLucas/tokentrim/blob/main/tokentrim/tokentrim.py
# Credits for this code go to Killian Lucas
def trim_messages(
messages,
model: Optional[str] = None,
trim_ratio: float = 0.75,
return_response_tokens: bool = False,
max_tokens=None,
):
"""
Trim a list of messages to fit within a model's token limit.
Args:
messages: Input messages to be trimmed. Each message is a dictionary with 'role' and 'content'.
model: The LiteLLM model being used (determines the token limit).
trim_ratio: Target ratio of tokens to use after trimming. Default is 0.75, meaning it will trim messages so they use about 75% of the model's token limit.
return_response_tokens: If True, also return the number of tokens left available for the response after trimming.
max_tokens: Instead of specifying a model or trim_ratio, you can specify this directly.
Returns:
Trimmed messages and optionally the number of tokens available for response.
"""
# Initialize max_tokens
# if users pass in max tokens, trim to this amount
messages = copy.deepcopy(messages)
try:
if max_tokens is None:
# Check if model is valid
if model in litellm.model_cost:
max_tokens_for_model = litellm.model_cost[model].get(
"max_input_tokens", litellm.model_cost[model]["max_tokens"]
)
max_tokens = int(max_tokens_for_model * trim_ratio)
else:
# if user did not specify max (input) tokens
# or passed an llm litellm does not know
# do nothing, just return messages
return messages
system_message = ""
for message in messages:
if message["role"] == "system":
system_message += "\n" if system_message else ""
system_message += message["content"]
## Handle Tool Call ## - check if last message is a tool response, return as is - https://github.com/BerriAI/litellm/issues/4931
tool_messages = []
for message in reversed(messages):
if message["role"] != "tool":
break
tool_messages.append(message)
# # Remove the collected tool messages from the original list
if len(tool_messages):
messages = messages[: -len(tool_messages)]
current_tokens = token_counter(model=model or "", messages=messages)
print_verbose(f"Current tokens: {current_tokens}, max tokens: {max_tokens}")
# Do nothing if current tokens under messages
if current_tokens < max_tokens:
return messages
#### Trimming messages if current_tokens > max_tokens
print_verbose(
f"Need to trim input messages: {messages}, current_tokens{current_tokens}, max_tokens: {max_tokens}"
)
system_message_event: Optional[dict] = None
if system_message:
system_message_event, max_tokens = process_system_message(
system_message=system_message, max_tokens=max_tokens, model=model
)
if max_tokens == 0: # the system messages are too long
return [system_message_event]
# Since all system messages are combined and trimmed to fit the max_tokens,
# we remove all system messages from the messages list
messages = [message for message in messages if message["role"] != "system"]
final_messages = process_messages(
messages=messages, max_tokens=max_tokens, model=model
)
# Add system message to the beginning of the final messages
if system_message_event:
final_messages = [system_message_event] + final_messages
if len(tool_messages) > 0:
final_messages.extend(tool_messages)
if (
return_response_tokens
): # if user wants token count with new trimmed messages
response_tokens = max_tokens - get_token_count(final_messages, model)
return final_messages, response_tokens
return final_messages
except Exception as e: # [NON-Blocking, if error occurs just return final_messages
verbose_logger.exception(
"Got exception while token trimming - {}".format(str(e))
)
return messages
def get_valid_models(check_provider_endpoint: bool = False) -> List[str]:
"""
Returns a list of valid LLMs based on the set environment variables
Args:
check_provider_endpoint: If True, will check the provider's endpoint for valid models.
Returns:
A list of valid LLMs
"""
try:
# get keys set in .env
environ_keys = os.environ.keys()
valid_providers = []
# for all valid providers, make a list of supported llms
valid_models = []
for provider in litellm.provider_list:
# edge case litellm has together_ai as a provider, it should be togetherai
env_provider_1 = provider.replace("_", "")
env_provider_2 = provider
# litellm standardizes expected provider keys to
# PROVIDER_API_KEY. Example: OPENAI_API_KEY, COHERE_API_KEY
expected_provider_key_1 = f"{env_provider_1.upper()}_API_KEY"
expected_provider_key_2 = f"{env_provider_2.upper()}_API_KEY"
if (
expected_provider_key_1 in environ_keys
or expected_provider_key_2 in environ_keys
):
# key is set
valid_providers.append(provider)
for provider in valid_providers:
provider_config = ProviderConfigManager.get_provider_model_info(
model=None,
provider=LlmProviders(provider),
)
if provider == "azure":
valid_models.append("Azure-LLM")
elif provider_config is not None and check_provider_endpoint:
valid_models.extend(provider_config.get_models())
else:
models_for_provider = litellm.models_by_provider.get(provider, [])
valid_models.extend(models_for_provider)
return valid_models
except Exception as e:
verbose_logger.debug(f"Error getting valid models: {e}")
return [] # NON-Blocking
def print_args_passed_to_litellm(original_function, args, kwargs):
if not _is_debugging_on():
return
try:
# we've already printed this for acompletion, don't print for completion
if (
"acompletion" in kwargs
and kwargs["acompletion"] is True
and original_function.__name__ == "completion"
):
return
elif (
"aembedding" in kwargs
and kwargs["aembedding"] is True
and original_function.__name__ == "embedding"
):
return
elif (
"aimg_generation" in kwargs
and kwargs["aimg_generation"] is True
and original_function.__name__ == "img_generation"
):
return
args_str = ", ".join(map(repr, args))
kwargs_str = ", ".join(f"{key}={repr(value)}" for key, value in kwargs.items())
print_verbose(
"\n",
) # new line before
print_verbose(
"\033[92mRequest to litellm:\033[0m",
)
if args and kwargs:
print_verbose(
f"\033[92mlitellm.{original_function.__name__}({args_str}, {kwargs_str})\033[0m"
)
elif args:
print_verbose(
f"\033[92mlitellm.{original_function.__name__}({args_str})\033[0m"
)
elif kwargs:
print_verbose(
f"\033[92mlitellm.{original_function.__name__}({kwargs_str})\033[0m"
)
else:
print_verbose(f"\033[92mlitellm.{original_function.__name__}()\033[0m")
print_verbose("\n") # new line after
except Exception:
# This should always be non blocking
pass
def get_logging_id(start_time, response_obj):
try:
response_id = (
"time-" + start_time.strftime("%H-%M-%S-%f") + "_" + response_obj.get("id")
)
return response_id
except Exception:
return None
def _get_base_model_from_metadata(model_call_details=None):
if model_call_details is None:
return None
litellm_params = model_call_details.get("litellm_params", {})
if litellm_params is not None:
_base_model = litellm_params.get("base_model", None)
if _base_model is not None:
return _base_model
metadata = litellm_params.get("metadata", {})
return _get_base_model_from_litellm_call_metadata(metadata=metadata)
return None
class ModelResponseIterator:
def __init__(self, model_response: ModelResponse, convert_to_delta: bool = False):
if convert_to_delta is True:
self.model_response = ModelResponse(stream=True)
_delta = self.model_response.choices[0].delta # type: ignore
_delta.content = model_response.choices[0].message.content # type: ignore
else:
self.model_response = model_response
self.is_done = False
# Sync iterator
def __iter__(self):
return self
def __next__(self):
if self.is_done:
raise StopIteration
self.is_done = True
return self.model_response
# Async iterator
def __aiter__(self):
return self
async def __anext__(self):
if self.is_done:
raise StopAsyncIteration
self.is_done = True
return self.model_response
class ModelResponseListIterator:
def __init__(self, model_responses):
self.model_responses = model_responses
self.index = 0
# Sync iterator
def __iter__(self):
return self
def __next__(self):
if self.index >= len(self.model_responses):
raise StopIteration
model_response = self.model_responses[self.index]
self.index += 1
return model_response
# Async iterator
def __aiter__(self):
return self
async def __anext__(self):
if self.index >= len(self.model_responses):
raise StopAsyncIteration
model_response = self.model_responses[self.index]
self.index += 1
return model_response
class CustomModelResponseIterator(Iterable):
def __init__(self) -> None:
super().__init__()
def is_cached_message(message: AllMessageValues) -> bool:
"""
Returns true, if message is marked as needing to be cached.
Used for anthropic/gemini context caching.
Follows the anthropic format {"cache_control": {"type": "ephemeral"}}
"""
if "content" not in message:
return False
if message["content"] is None or isinstance(message["content"], str):
return False
for content in message["content"]:
if (
content["type"] == "text"
and content.get("cache_control") is not None
and content["cache_control"]["type"] == "ephemeral" # type: ignore
):
return True
return False
def is_base64_encoded(s: str) -> bool:
try:
# Strip out the prefix if it exists
if not s.startswith(
"data:"
): # require `data:` for base64 str, like openai. Prevents false positives like s='Dog'
return False
s = s.split(",")[1]
# Try to decode the string
decoded_bytes = base64.b64decode(s, validate=True)
# Check if the original string can be re-encoded to the same string
return base64.b64encode(decoded_bytes).decode("utf-8") == s
except Exception:
return False
def get_base64_str(s: str) -> str:
"""
s: b64str OR 
"""
if "," in s:
return s.split(",")[1]
return s
def has_tool_call_blocks(messages: List[AllMessageValues]) -> bool:
"""
Returns true, if messages has tool call blocks.
Used for anthropic/bedrock message validation.
"""
for message in messages:
if message.get("tool_calls") is not None:
return True
return False
def add_dummy_tool(custom_llm_provider: str) -> List[ChatCompletionToolParam]:
"""
Prevent Anthropic from raising error when tool_use block exists but no tools are provided.
Relevent Issues: https://github.com/BerriAI/litellm/issues/5388, https://github.com/BerriAI/litellm/issues/5747
"""
return [
ChatCompletionToolParam(
type="function",
function=ChatCompletionToolParamFunctionChunk(
name="dummy_tool",
description="This is a dummy tool call", # provided to satisfy bedrock constraint.
parameters={
"type": "object",
"properties": {},
},
),
)
]
from litellm.types.llms.openai import (
ChatCompletionAudioObject,
ChatCompletionImageObject,
ChatCompletionTextObject,
ChatCompletionUserMessage,
OpenAIMessageContent,
ValidUserMessageContentTypes,
)
def convert_to_dict(message: Union[BaseModel, dict]) -> dict:
"""
Converts a message to a dictionary if it's a Pydantic model.
Args:
message: The message, which may be a Pydantic model or a dictionary.
Returns:
dict: The converted message.
"""
if isinstance(message, BaseModel):
return message.model_dump(exclude_none=True)
elif isinstance(message, dict):
return message
else:
raise TypeError(
f"Invalid message type: {type(message)}. Expected dict or Pydantic model."
)
def validate_chat_completion_messages(messages: List[AllMessageValues]):
"""
Ensures all messages are valid OpenAI chat completion messages.
"""
# 1. convert all messages to dict
messages = [
cast(AllMessageValues, convert_to_dict(cast(dict, m))) for m in messages
]
# 2. validate user messages
return validate_chat_completion_user_messages(messages=messages)
def validate_chat_completion_user_messages(messages: List[AllMessageValues]):
"""
Ensures all user messages are valid OpenAI chat completion messages.
Args:
messages: List of message dictionaries
message_content_type: Type to validate content against
Returns:
List[dict]: The validated messages
Raises:
ValueError: If any message is invalid
"""
for idx, m in enumerate(messages):
try:
if m["role"] == "user":
user_content = m.get("content")
if user_content is not None:
if isinstance(user_content, str):
continue
elif isinstance(user_content, list):
for item in user_content:
if isinstance(item, dict):
if item.get("type") not in ValidUserMessageContentTypes:
raise Exception("invalid content type")
except Exception as e:
if "invalid content type" in str(e):
raise Exception(
f"Invalid user message={m} at index {idx}. Please ensure all user messages are valid OpenAI chat completion messages."
)
else:
raise e
return messages
def validate_chat_completion_tool_choice(
tool_choice: Optional[Union[dict, str]]
) -> Optional[Union[dict, str]]:
"""
Confirm the tool choice is passed in the OpenAI format.
Prevents user errors like: https://github.com/BerriAI/litellm/issues/7483
"""
from litellm.types.llms.openai import (
ChatCompletionToolChoiceObjectParam,
ChatCompletionToolChoiceStringValues,
)
if tool_choice is None:
return tool_choice
elif isinstance(tool_choice, str):
return tool_choice
elif isinstance(tool_choice, dict):
if tool_choice.get("type") is None or tool_choice.get("function") is None:
raise Exception(
f"Invalid tool choice, tool_choice={tool_choice}. Please ensure tool_choice follows the OpenAI spec"
)
return tool_choice
raise Exception(
f"Invalid tool choice, tool_choice={tool_choice}. Got={type(tool_choice)}. Expecting str, or dict. Please ensure tool_choice follows the OpenAI tool_choice spec"
)
class ProviderConfigManager:
@staticmethod
def get_provider_chat_config( # noqa: PLR0915
model: str, provider: LlmProviders
) -> BaseConfig:
"""
Returns the provider config for a given provider.
"""
if (
provider == LlmProviders.OPENAI
and litellm.openaiOSeriesConfig.is_model_o_series_model(model=model)
):
return litellm.openaiOSeriesConfig
elif litellm.LlmProviders.DEEPSEEK == provider:
return litellm.DeepSeekChatConfig()
elif litellm.LlmProviders.GROQ == provider:
return litellm.GroqChatConfig()
elif litellm.LlmProviders.DATABRICKS == provider:
return litellm.DatabricksConfig()
elif litellm.LlmProviders.XAI == provider:
return litellm.XAIChatConfig()
elif litellm.LlmProviders.TEXT_COMPLETION_OPENAI == provider:
return litellm.OpenAITextCompletionConfig()
elif litellm.LlmProviders.COHERE_CHAT == provider:
return litellm.CohereChatConfig()
elif litellm.LlmProviders.COHERE == provider:
return litellm.CohereConfig()
elif litellm.LlmProviders.CLARIFAI == provider:
return litellm.ClarifaiConfig()
elif litellm.LlmProviders.ANTHROPIC == provider:
return litellm.AnthropicConfig()
elif litellm.LlmProviders.ANTHROPIC_TEXT == provider:
return litellm.AnthropicTextConfig()
elif litellm.LlmProviders.VERTEX_AI == provider:
if "claude" in model:
return litellm.VertexAIAnthropicConfig()
elif litellm.LlmProviders.CLOUDFLARE == provider:
return litellm.CloudflareChatConfig()
elif litellm.LlmProviders.SAGEMAKER_CHAT == provider:
return litellm.SagemakerChatConfig()
elif litellm.LlmProviders.SAGEMAKER == provider:
return litellm.SagemakerConfig()
elif litellm.LlmProviders.FIREWORKS_AI == provider:
return litellm.FireworksAIConfig()
elif litellm.LlmProviders.FRIENDLIAI == provider:
return litellm.FriendliaiChatConfig()
elif litellm.LlmProviders.WATSONX == provider:
return litellm.IBMWatsonXChatConfig()
elif litellm.LlmProviders.WATSONX_TEXT == provider:
return litellm.IBMWatsonXAIConfig()
elif litellm.LlmProviders.EMPOWER == provider:
return litellm.EmpowerChatConfig()
elif litellm.LlmProviders.GITHUB == provider:
return litellm.GithubChatConfig()
elif (
litellm.LlmProviders.CUSTOM == provider
or litellm.LlmProviders.CUSTOM_OPENAI == provider
or litellm.LlmProviders.OPENAI_LIKE == provider
or litellm.LlmProviders.LITELLM_PROXY == provider
):
return litellm.OpenAILikeChatConfig()
elif litellm.LlmProviders.AIOHTTP_OPENAI == provider:
return litellm.AiohttpOpenAIChatConfig()
elif litellm.LlmProviders.HOSTED_VLLM == provider:
return litellm.HostedVLLMChatConfig()
elif litellm.LlmProviders.LM_STUDIO == provider:
return litellm.LMStudioChatConfig()
elif litellm.LlmProviders.GALADRIEL == provider:
return litellm.GaladrielChatConfig()
elif litellm.LlmProviders.REPLICATE == provider:
return litellm.ReplicateConfig()
elif litellm.LlmProviders.HUGGINGFACE == provider:
return litellm.HuggingfaceConfig()
elif litellm.LlmProviders.TOGETHER_AI == provider:
return litellm.TogetherAIConfig()
elif litellm.LlmProviders.OPENROUTER == provider:
return litellm.OpenrouterConfig()
elif litellm.LlmProviders.GEMINI == provider:
return litellm.GoogleAIStudioGeminiConfig()
elif (
litellm.LlmProviders.AI21 == provider
or litellm.LlmProviders.AI21_CHAT == provider
):
return litellm.AI21ChatConfig()
elif litellm.LlmProviders.AZURE == provider:
if litellm.AzureOpenAIO1Config().is_o_series_model(model=model):
return litellm.AzureOpenAIO1Config()
return litellm.AzureOpenAIConfig()
elif litellm.LlmProviders.AZURE_AI == provider:
return litellm.AzureAIStudioConfig()
elif litellm.LlmProviders.AZURE_TEXT == provider:
return litellm.AzureOpenAITextConfig()
elif litellm.LlmProviders.HOSTED_VLLM == provider:
return litellm.HostedVLLMChatConfig()
elif litellm.LlmProviders.NLP_CLOUD == provider:
return litellm.NLPCloudConfig()
elif litellm.LlmProviders.OOBABOOGA == provider:
return litellm.OobaboogaConfig()
elif litellm.LlmProviders.OLLAMA_CHAT == provider:
return litellm.OllamaChatConfig()
elif litellm.LlmProviders.DEEPINFRA == provider:
return litellm.DeepInfraConfig()
elif litellm.LlmProviders.PERPLEXITY == provider:
return litellm.PerplexityChatConfig()
elif (
litellm.LlmProviders.MISTRAL == provider
or litellm.LlmProviders.CODESTRAL == provider
):
return litellm.MistralConfig()
elif litellm.LlmProviders.NVIDIA_NIM == provider:
return litellm.NvidiaNimConfig()
elif litellm.LlmProviders.CEREBRAS == provider:
return litellm.CerebrasConfig()
elif litellm.LlmProviders.VOLCENGINE == provider:
return litellm.VolcEngineConfig()
elif litellm.LlmProviders.TEXT_COMPLETION_CODESTRAL == provider:
return litellm.CodestralTextCompletionConfig()
elif litellm.LlmProviders.SAMBANOVA == provider:
return litellm.SambanovaConfig()
elif litellm.LlmProviders.MARITALK == provider:
return litellm.MaritalkConfig()
elif litellm.LlmProviders.CLOUDFLARE == provider:
return litellm.CloudflareChatConfig()
elif litellm.LlmProviders.ANTHROPIC_TEXT == provider:
return litellm.AnthropicTextConfig()
elif litellm.LlmProviders.VLLM == provider:
return litellm.VLLMConfig()
elif litellm.LlmProviders.OLLAMA == provider:
return litellm.OllamaConfig()
elif litellm.LlmProviders.PREDIBASE == provider:
return litellm.PredibaseConfig()
elif litellm.LlmProviders.TRITON == provider:
return litellm.TritonConfig()
elif litellm.LlmProviders.PETALS == provider:
return litellm.PetalsConfig()
elif litellm.LlmProviders.BEDROCK == provider:
base_model = litellm.AmazonConverseConfig()._get_base_model(model)
bedrock_provider = litellm.BedrockLLM.get_bedrock_invoke_provider(model)
if (
base_model in litellm.bedrock_converse_models
or "converse_like" in model
):
return litellm.AmazonConverseConfig()
elif bedrock_provider == "amazon": # amazon titan llms
return litellm.AmazonTitanConfig()
elif (
bedrock_provider == "meta" or bedrock_provider == "llama"
): # amazon / meta llms
return litellm.AmazonLlamaConfig()
elif bedrock_provider == "ai21": # ai21 llms
return litellm.AmazonAI21Config()
elif bedrock_provider == "cohere": # cohere models on bedrock
return litellm.AmazonCohereConfig()
elif bedrock_provider == "mistral": # mistral models on bedrock
return litellm.AmazonMistralConfig()
return litellm.OpenAIGPTConfig()
@staticmethod
def get_provider_embedding_config(
model: str,
provider: LlmProviders,
) -> BaseEmbeddingConfig:
if litellm.LlmProviders.VOYAGE == provider:
return litellm.VoyageEmbeddingConfig()
elif litellm.LlmProviders.TRITON == provider:
return litellm.TritonEmbeddingConfig()
elif litellm.LlmProviders.WATSONX == provider:
return litellm.IBMWatsonXEmbeddingConfig()
raise ValueError(f"Provider {provider.value} does not support embedding config")
@staticmethod
def get_provider_rerank_config(
model: str,
provider: LlmProviders,
) -> BaseRerankConfig:
if litellm.LlmProviders.COHERE == provider:
return litellm.CohereRerankConfig()
elif litellm.LlmProviders.AZURE_AI == provider:
return litellm.AzureAIRerankConfig()
elif litellm.LlmProviders.INFINITY == provider:
return litellm.InfinityRerankConfig()
return litellm.CohereRerankConfig()
@staticmethod
def get_provider_audio_transcription_config(
model: str,
provider: LlmProviders,
) -> Optional[BaseAudioTranscriptionConfig]:
if litellm.LlmProviders.FIREWORKS_AI == provider:
return litellm.FireworksAIAudioTranscriptionConfig()
elif litellm.LlmProviders.DEEPGRAM == provider:
return litellm.DeepgramAudioTranscriptionConfig()
return None
@staticmethod
def get_provider_text_completion_config(
model: str,
provider: LlmProviders,
) -> BaseTextCompletionConfig:
if LlmProviders.FIREWORKS_AI == provider:
return litellm.FireworksAITextCompletionConfig()
elif LlmProviders.TOGETHER_AI == provider:
return litellm.TogetherAITextCompletionConfig()
return litellm.OpenAITextCompletionConfig()
@staticmethod
def get_provider_model_info(
model: Optional[str],
provider: LlmProviders,
) -> Optional[BaseLLMModelInfo]:
if LlmProviders.FIREWORKS_AI == provider:
return litellm.FireworksAIConfig()
elif LlmProviders.OPENAI == provider:
return litellm.OpenAIGPTConfig()
elif LlmProviders.LITELLM_PROXY == provider:
return litellm.LiteLLMProxyChatConfig()
elif LlmProviders.TOPAZ == provider:
return litellm.TopazModelInfo()
return None
@staticmethod
def get_provider_image_variation_config(
model: str,
provider: LlmProviders,
) -> Optional[BaseImageVariationConfig]:
if LlmProviders.OPENAI == provider:
return litellm.OpenAIImageVariationConfig()
elif LlmProviders.TOPAZ == provider:
return litellm.TopazImageVariationConfig()
return None
def get_end_user_id_for_cost_tracking(
litellm_params: dict,
service_type: Literal["litellm_logging", "prometheus"] = "litellm_logging",
) -> Optional[str]:
"""
Used for enforcing `disable_end_user_cost_tracking` param.
service_type: "litellm_logging" or "prometheus" - used to allow prometheus only disable cost tracking.
"""
_metadata = cast(dict, litellm_params.get("metadata", {}) or {})
end_user_id = cast(
Optional[str],
litellm_params.get("user_api_key_end_user_id")
or _metadata.get("user_api_key_end_user_id"),
)
if litellm.disable_end_user_cost_tracking:
return None
if (
service_type == "prometheus"
and litellm.disable_end_user_cost_tracking_prometheus_only
):
return None
return end_user_id
def is_prompt_caching_valid_prompt(
model: str,
messages: Optional[List[AllMessageValues]],
tools: Optional[List[ChatCompletionToolParam]] = None,
custom_llm_provider: Optional[str] = None,
) -> bool:
"""
Returns true if the prompt is valid for prompt caching.
OpenAI + Anthropic providers have a minimum token count of 1024 for prompt caching.
"""
try:
if messages is None and tools is None:
return False
if custom_llm_provider is not None and not model.startswith(
custom_llm_provider
):
model = custom_llm_provider + "/" + model
token_count = token_counter(
messages=messages,
tools=tools,
model=model,
use_default_image_token_count=True,
)
return token_count >= 1024
except Exception as e:
verbose_logger.error(f"Error in is_prompt_caching_valid_prompt: {e}")
return False
def extract_duration_from_srt_or_vtt(srt_or_vtt_content: str) -> Optional[float]:
"""
Extracts the total duration (in seconds) from SRT or VTT content.
Args:
srt_or_vtt_content (str): The content of an SRT or VTT file as a string.
Returns:
Optional[float]: The total duration in seconds, or None if no timestamps are found.
"""
# Regular expression to match timestamps in the format "hh:mm:ss,ms" or "hh:mm:ss.ms"
timestamp_pattern = r"(\d{2}):(\d{2}):(\d{2})[.,](\d{3})"
timestamps = re.findall(timestamp_pattern, srt_or_vtt_content)
if not timestamps:
return None
# Convert timestamps to seconds and find the max (end time)
durations = []
for match in timestamps:
hours, minutes, seconds, milliseconds = map(int, match)
total_seconds = hours * 3600 + minutes * 60 + seconds + milliseconds / 1000.0
durations.append(total_seconds)
return max(durations) if durations else None
import httpx
def _add_path_to_api_base(api_base: str, ending_path: str) -> str:
"""
Adds an ending path to an API base URL while preventing duplicate path segments.
Args:
api_base: Base URL string
ending_path: Path to append to the base URL
Returns:
Modified URL string with proper path handling
"""
original_url = httpx.URL(api_base)
base_url = original_url.copy_with(params={}) # Removes query params
base_path = original_url.path.rstrip("/")
end_path = ending_path.lstrip("/")
# Split paths into segments
base_segments = [s for s in base_path.split("/") if s]
end_segments = [s for s in end_path.split("/") if s]
# Find overlapping segments from the end of base_path and start of ending_path
final_segments = []
for i in range(len(base_segments)):
if base_segments[i:] == end_segments[: len(base_segments) - i]:
final_segments = base_segments[:i] + end_segments
break
else:
# No overlap found, just combine all segments
final_segments = base_segments + end_segments
# Construct the new path
modified_path = "/" + "/".join(final_segments)
modified_url = base_url.copy_with(path=modified_path)
# Re-add the original query parameters
return str(modified_url.copy_with(params=original_url.params))
def get_non_default_completion_params(kwargs: dict) -> dict:
openai_params = litellm.OPENAI_CHAT_COMPLETION_PARAMS
default_params = openai_params + all_litellm_params
non_default_params = {
k: v for k, v in kwargs.items() if k not in default_params
} # model-specific params - pass them straight to the model/provider
return non_default_params
def add_openai_metadata(metadata: dict) -> dict:
"""
Add metadata to openai optional parameters, excluding hidden params
Args:
params (dict): Dictionary of API parameters
metadata (dict, optional): Metadata to include in the request
Returns:
dict: Updated parameters dictionary with visible metadata only
"""
if metadata is None:
return None
# Only include non-hidden parameters
visible_metadata = {k: v for k, v in metadata.items() if k != "hidden_params"}
return visible_metadata.copy()