File size: 245,133 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
# +-----------------------------------------------+
# |                                               |
# |           Give Feedback / Get Help            |
# | https://github.com/BerriAI/litellm/issues/new |
# |                                               |
# +-----------------------------------------------+
#
#  Thank you users! We ❤️ you! - Krrish & Ishaan

import ast
import asyncio
import base64
import binascii
import copy
import datetime
import hashlib
import inspect
import io
import itertools
import json
import logging
import os
import random  # type: ignore
import re
import struct
import subprocess

# What is this?
## Generic utils.py file. Problem-specific utils (e.g. 'cost calculation), should all be in `litellm_core_utils/`.
import sys
import textwrap
import threading
import time
import traceback
import uuid
from dataclasses import dataclass, field
from functools import lru_cache, wraps
from importlib import resources
from inspect import iscoroutine
from os.path import abspath, dirname, join

import aiohttp
import dotenv
import httpx
import openai
import tiktoken
from httpx import Proxy
from httpx._utils import get_environment_proxies
from openai.lib import _parsing, _pydantic
from openai.types.chat.completion_create_params import ResponseFormat
from pydantic import BaseModel
from tiktoken import Encoding
from tokenizers import Tokenizer

import litellm
import litellm._service_logger  # for storing API inputs, outputs, and metadata
import litellm.litellm_core_utils
import litellm.litellm_core_utils.audio_utils.utils
import litellm.litellm_core_utils.json_validation_rule
from litellm.caching._internal_lru_cache import lru_cache_wrapper
from litellm.caching.caching import DualCache
from litellm.caching.caching_handler import CachingHandlerResponse, LLMCachingHandler
from litellm.integrations.custom_logger import CustomLogger
from litellm.litellm_core_utils.core_helpers import (
    map_finish_reason,
    process_response_headers,
)
from litellm.litellm_core_utils.default_encoding import encoding
from litellm.litellm_core_utils.exception_mapping_utils import (
    _get_response_headers,
    exception_type,
    get_error_message,
)
from litellm.litellm_core_utils.get_litellm_params import (
    _get_base_model_from_litellm_call_metadata,
    get_litellm_params,
)
from litellm.litellm_core_utils.get_llm_provider_logic import (
    _is_non_openai_azure_model,
    get_llm_provider,
)
from litellm.litellm_core_utils.get_supported_openai_params import (
    get_supported_openai_params,
)
from litellm.litellm_core_utils.llm_request_utils import _ensure_extra_body_is_safe
from litellm.litellm_core_utils.llm_response_utils.convert_dict_to_response import (
    LiteLLMResponseObjectHandler,
    _handle_invalid_parallel_tool_calls,
    convert_to_model_response_object,
    convert_to_streaming_response,
    convert_to_streaming_response_async,
)
from litellm.litellm_core_utils.llm_response_utils.get_api_base import get_api_base
from litellm.litellm_core_utils.llm_response_utils.get_formatted_prompt import (
    get_formatted_prompt,
)
from litellm.litellm_core_utils.llm_response_utils.get_headers import (
    get_response_headers,
)
from litellm.litellm_core_utils.llm_response_utils.response_metadata import (
    ResponseMetadata,
)
from litellm.litellm_core_utils.redact_messages import (
    LiteLLMLoggingObject,
    redact_message_input_output_from_logging,
)
from litellm.litellm_core_utils.rules import Rules
from litellm.litellm_core_utils.streaming_handler import CustomStreamWrapper
from litellm.litellm_core_utils.token_counter import (
    calculate_img_tokens,
    get_modified_max_tokens,
)
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
from litellm.router_utils.get_retry_from_policy import (
    get_num_retries_from_retry_policy,
    reset_retry_policy,
)
from litellm.secret_managers.main import get_secret
from litellm.types.llms.anthropic import ANTHROPIC_API_ONLY_HEADERS
from litellm.types.llms.openai import (
    AllMessageValues,
    AllPromptValues,
    ChatCompletionAssistantToolCall,
    ChatCompletionNamedToolChoiceParam,
    ChatCompletionToolParam,
    ChatCompletionToolParamFunctionChunk,
    OpenAITextCompletionUserMessage,
)
from litellm.types.rerank import RerankResponse
from litellm.types.utils import FileTypes  # type: ignore
from litellm.types.utils import (
    OPENAI_RESPONSE_HEADERS,
    CallTypes,
    ChatCompletionDeltaToolCall,
    ChatCompletionMessageToolCall,
    Choices,
    CostPerToken,
    CustomHuggingfaceTokenizer,
    Delta,
    Embedding,
    EmbeddingResponse,
    Function,
    ImageResponse,
    LlmProviders,
    LlmProvidersSet,
    Message,
    ModelInfo,
    ModelInfoBase,
    ModelResponse,
    ModelResponseStream,
    ProviderField,
    ProviderSpecificModelInfo,
    SelectTokenizerResponse,
    StreamingChoices,
    TextChoices,
    TextCompletionResponse,
    TranscriptionResponse,
    Usage,
    all_litellm_params,
)

with resources.open_text(
    "litellm.litellm_core_utils.tokenizers", "anthropic_tokenizer.json"
) as f:
    json_data = json.load(f)
# Convert to str (if necessary)
claude_json_str = json.dumps(json_data)
import importlib.metadata
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Dict,
    Iterable,
    List,
    Literal,
    Optional,
    Tuple,
    Type,
    Union,
    cast,
    get_args,
)

from openai import OpenAIError as OriginalError

from litellm.litellm_core_utils.thread_pool_executor import executor
from litellm.llms.base_llm.audio_transcription.transformation import (
    BaseAudioTranscriptionConfig,
)
from litellm.llms.base_llm.base_utils import (
    BaseLLMModelInfo,
    type_to_response_format_param,
)
from litellm.llms.base_llm.chat.transformation import BaseConfig
from litellm.llms.base_llm.completion.transformation import BaseTextCompletionConfig
from litellm.llms.base_llm.embedding.transformation import BaseEmbeddingConfig
from litellm.llms.base_llm.image_variations.transformation import (
    BaseImageVariationConfig,
)
from litellm.llms.base_llm.rerank.transformation import BaseRerankConfig

from ._logging import _is_debugging_on, verbose_logger
from .caching.caching import (
    Cache,
    QdrantSemanticCache,
    RedisCache,
    RedisSemanticCache,
    S3Cache,
)
from .exceptions import (
    APIConnectionError,
    APIError,
    AuthenticationError,
    BadRequestError,
    BudgetExceededError,
    ContentPolicyViolationError,
    ContextWindowExceededError,
    NotFoundError,
    OpenAIError,
    PermissionDeniedError,
    RateLimitError,
    ServiceUnavailableError,
    Timeout,
    UnprocessableEntityError,
    UnsupportedParamsError,
)
from .proxy._types import AllowedModelRegion, KeyManagementSystem
from .types.llms.openai import (
    ChatCompletionDeltaToolCallChunk,
    ChatCompletionToolCallChunk,
    ChatCompletionToolCallFunctionChunk,
)
from .types.router import LiteLLM_Params

####### ENVIRONMENT VARIABLES ####################
# Adjust to your specific application needs / system capabilities.
sentry_sdk_instance = None
capture_exception = None
add_breadcrumb = None
posthog = None
slack_app = None
alerts_channel = None
heliconeLogger = None
athinaLogger = None
promptLayerLogger = None
langsmithLogger = None
logfireLogger = None
weightsBiasesLogger = None
customLogger = None
langFuseLogger = None
openMeterLogger = None
lagoLogger = None
dataDogLogger = None
prometheusLogger = None
dynamoLogger = None
s3Logger = None
genericAPILogger = None
greenscaleLogger = None
lunaryLogger = None
aispendLogger = None
supabaseClient = None
callback_list: Optional[List[str]] = []
user_logger_fn = None
additional_details: Optional[Dict[str, str]] = {}
local_cache: Optional[Dict[str, str]] = {}
last_fetched_at = None
last_fetched_at_keys = None
######## Model Response #########################

# All liteLLM Model responses will be in this format, Follows the OpenAI Format
# https://docs.litellm.ai/docs/completion/output
# {
#   'choices': [
#      {
#         'finish_reason': 'stop',
#         'index': 0,
#         'message': {
#            'role': 'assistant',
#             'content': " I'm doing well, thank you for asking. I am Claude, an AI assistant created by Anthropic."
#         }
#       }
#     ],
#  'created': 1691429984.3852863,
#  'model': 'claude-instant-1',
#  'usage': {'prompt_tokens': 18, 'completion_tokens': 23, 'total_tokens': 41}
# }


############################################################
def print_verbose(
    print_statement,
    logger_only: bool = False,
    log_level: Literal["DEBUG", "INFO", "ERROR"] = "DEBUG",
):
    try:
        if log_level == "DEBUG":
            verbose_logger.debug(print_statement)
        elif log_level == "INFO":
            verbose_logger.info(print_statement)
        elif log_level == "ERROR":
            verbose_logger.error(print_statement)
        if litellm.set_verbose is True and logger_only is False:
            print(print_statement)  # noqa
    except Exception:
        pass


####### CLIENT ###################
# make it easy to log if completion/embedding runs succeeded or failed + see what happened | Non-Blocking
def custom_llm_setup():
    """
    Add custom_llm provider to provider list
    """
    for custom_llm in litellm.custom_provider_map:
        if custom_llm["provider"] not in litellm.provider_list:
            litellm.provider_list.append(custom_llm["provider"])

        if custom_llm["provider"] not in litellm._custom_providers:
            litellm._custom_providers.append(custom_llm["provider"])


def _add_custom_logger_callback_to_specific_event(
    callback: str, logging_event: Literal["success", "failure"]
) -> None:
    """
    Add a custom logger callback to the specific event
    """
    from litellm import _custom_logger_compatible_callbacks_literal
    from litellm.litellm_core_utils.litellm_logging import (
        _init_custom_logger_compatible_class,
    )

    if callback not in litellm._known_custom_logger_compatible_callbacks:
        verbose_logger.debug(
            f"Callback {callback} is not a valid custom logger compatible callback. Known list - {litellm._known_custom_logger_compatible_callbacks}"
        )
        return

    callback_class = _init_custom_logger_compatible_class(
        cast(_custom_logger_compatible_callbacks_literal, callback),
        internal_usage_cache=None,
        llm_router=None,
    )

    if callback_class:
        if (
            logging_event == "success"
            and _custom_logger_class_exists_in_success_callbacks(callback_class)
            is False
        ):
            litellm.logging_callback_manager.add_litellm_success_callback(
                callback_class
            )
            litellm.logging_callback_manager.add_litellm_async_success_callback(
                callback_class
            )
            if callback in litellm.success_callback:
                litellm.success_callback.remove(
                    callback
                )  # remove the string from the callback list
            if callback in litellm._async_success_callback:
                litellm._async_success_callback.remove(
                    callback
                )  # remove the string from the callback list
        elif (
            logging_event == "failure"
            and _custom_logger_class_exists_in_failure_callbacks(callback_class)
            is False
        ):
            litellm.logging_callback_manager.add_litellm_failure_callback(
                callback_class
            )
            litellm.logging_callback_manager.add_litellm_async_failure_callback(
                callback_class
            )
            if callback in litellm.failure_callback:
                litellm.failure_callback.remove(
                    callback
                )  # remove the string from the callback list
            if callback in litellm._async_failure_callback:
                litellm._async_failure_callback.remove(
                    callback
                )  # remove the string from the callback list


def _custom_logger_class_exists_in_success_callbacks(
    callback_class: CustomLogger,
) -> bool:
    """
    Returns True if an instance of the custom logger exists in litellm.success_callback or litellm._async_success_callback

    e.g if `LangfusePromptManagement` is passed in, it will return True if an instance of `LangfusePromptManagement` exists in litellm.success_callback or litellm._async_success_callback

    Prevents double adding a custom logger callback to the litellm callbacks
    """
    return any(
        isinstance(cb, type(callback_class))
        for cb in litellm.success_callback + litellm._async_success_callback
    )


def _custom_logger_class_exists_in_failure_callbacks(
    callback_class: CustomLogger,
) -> bool:
    """
    Returns True if an instance of the custom logger exists in litellm.failure_callback or litellm._async_failure_callback

    e.g if `LangfusePromptManagement` is passed in, it will return True if an instance of `LangfusePromptManagement` exists in litellm.failure_callback or litellm._async_failure_callback

    Prevents double adding a custom logger callback to the litellm callbacks
    """
    return any(
        isinstance(cb, type(callback_class))
        for cb in litellm.failure_callback + litellm._async_failure_callback
    )


def function_setup(  # noqa: PLR0915
    original_function: str, rules_obj, start_time, *args, **kwargs
):  # just run once to check if user wants to send their data anywhere - PostHog/Sentry/Slack/etc.

    ### NOTICES ###
    from litellm import Logging as LiteLLMLogging
    from litellm.litellm_core_utils.litellm_logging import set_callbacks

    if litellm.set_verbose is True:
        verbose_logger.warning(
            "`litellm.set_verbose` is deprecated. Please set `os.environ['LITELLM_LOG'] = 'DEBUG'` for debug logs."
        )
    try:
        global callback_list, add_breadcrumb, user_logger_fn, Logging

        ## CUSTOM LLM SETUP ##
        custom_llm_setup()

        ## LOGGING SETUP
        function_id: Optional[str] = kwargs["id"] if "id" in kwargs else None

        if len(litellm.callbacks) > 0:
            for callback in litellm.callbacks:
                # check if callback is a string - e.g. "lago", "openmeter"
                if isinstance(callback, str):
                    callback = litellm.litellm_core_utils.litellm_logging._init_custom_logger_compatible_class(  # type: ignore
                        callback, internal_usage_cache=None, llm_router=None
                    )
                    if callback is None or any(
                        isinstance(cb, type(callback))
                        for cb in litellm._async_success_callback
                    ):  # don't double add a callback
                        continue
                if callback not in litellm.input_callback:
                    litellm.input_callback.append(callback)  # type: ignore
                if callback not in litellm.success_callback:
                    litellm.logging_callback_manager.add_litellm_success_callback(callback)  # type: ignore
                if callback not in litellm.failure_callback:
                    litellm.logging_callback_manager.add_litellm_failure_callback(callback)  # type: ignore
                if callback not in litellm._async_success_callback:
                    litellm.logging_callback_manager.add_litellm_async_success_callback(callback)  # type: ignore
                if callback not in litellm._async_failure_callback:
                    litellm.logging_callback_manager.add_litellm_async_failure_callback(callback)  # type: ignore
            print_verbose(
                f"Initialized litellm callbacks, Async Success Callbacks: {litellm._async_success_callback}"
            )

        if (
            len(litellm.input_callback) > 0
            or len(litellm.success_callback) > 0
            or len(litellm.failure_callback) > 0
        ) and len(
            callback_list  # type: ignore
        ) == 0:  # type: ignore
            callback_list = list(
                set(
                    litellm.input_callback  # type: ignore
                    + litellm.success_callback
                    + litellm.failure_callback
                )
            )
            set_callbacks(callback_list=callback_list, function_id=function_id)
        ## ASYNC CALLBACKS
        if len(litellm.input_callback) > 0:
            removed_async_items = []
            for index, callback in enumerate(litellm.input_callback):  # type: ignore
                if inspect.iscoroutinefunction(callback):
                    litellm._async_input_callback.append(callback)
                    removed_async_items.append(index)

            # Pop the async items from input_callback in reverse order to avoid index issues
            for index in reversed(removed_async_items):
                litellm.input_callback.pop(index)
        if len(litellm.success_callback) > 0:
            removed_async_items = []
            for index, callback in enumerate(litellm.success_callback):  # type: ignore
                if inspect.iscoroutinefunction(callback):
                    litellm.logging_callback_manager.add_litellm_async_success_callback(
                        callback
                    )
                    removed_async_items.append(index)
                elif callback == "dynamodb" or callback == "openmeter":
                    # dynamo is an async callback, it's used for the proxy and needs to be async
                    # we only support async dynamo db logging for acompletion/aembedding since that's used on proxy
                    litellm.logging_callback_manager.add_litellm_async_success_callback(
                        callback
                    )
                    removed_async_items.append(index)
                elif (
                    callback in litellm._known_custom_logger_compatible_callbacks
                    and isinstance(callback, str)
                ):
                    _add_custom_logger_callback_to_specific_event(callback, "success")

            # Pop the async items from success_callback in reverse order to avoid index issues
            for index in reversed(removed_async_items):
                litellm.success_callback.pop(index)

        if len(litellm.failure_callback) > 0:
            removed_async_items = []
            for index, callback in enumerate(litellm.failure_callback):  # type: ignore
                if inspect.iscoroutinefunction(callback):
                    litellm.logging_callback_manager.add_litellm_async_failure_callback(
                        callback
                    )
                    removed_async_items.append(index)
                elif (
                    callback in litellm._known_custom_logger_compatible_callbacks
                    and isinstance(callback, str)
                ):
                    _add_custom_logger_callback_to_specific_event(callback, "failure")

            # Pop the async items from failure_callback in reverse order to avoid index issues
            for index in reversed(removed_async_items):
                litellm.failure_callback.pop(index)
        ### DYNAMIC CALLBACKS ###
        dynamic_success_callbacks: Optional[
            List[Union[str, Callable, CustomLogger]]
        ] = None
        dynamic_async_success_callbacks: Optional[
            List[Union[str, Callable, CustomLogger]]
        ] = None
        dynamic_failure_callbacks: Optional[
            List[Union[str, Callable, CustomLogger]]
        ] = None
        dynamic_async_failure_callbacks: Optional[
            List[Union[str, Callable, CustomLogger]]
        ] = None
        if kwargs.get("success_callback", None) is not None and isinstance(
            kwargs["success_callback"], list
        ):
            removed_async_items = []
            for index, callback in enumerate(kwargs["success_callback"]):
                if (
                    inspect.iscoroutinefunction(callback)
                    or callback == "dynamodb"
                    or callback == "s3"
                ):
                    if dynamic_async_success_callbacks is not None and isinstance(
                        dynamic_async_success_callbacks, list
                    ):
                        dynamic_async_success_callbacks.append(callback)
                    else:
                        dynamic_async_success_callbacks = [callback]
                    removed_async_items.append(index)
            # Pop the async items from success_callback in reverse order to avoid index issues
            for index in reversed(removed_async_items):
                kwargs["success_callback"].pop(index)
            dynamic_success_callbacks = kwargs.pop("success_callback")
        if kwargs.get("failure_callback", None) is not None and isinstance(
            kwargs["failure_callback"], list
        ):
            dynamic_failure_callbacks = kwargs.pop("failure_callback")

        if add_breadcrumb:
            try:
                details_to_log = copy.deepcopy(kwargs)
            except Exception:
                details_to_log = kwargs

            if litellm.turn_off_message_logging:
                # make a copy of the _model_Call_details and log it
                details_to_log.pop("messages", None)
                details_to_log.pop("input", None)
                details_to_log.pop("prompt", None)
            add_breadcrumb(
                category="litellm.llm_call",
                message=f"Positional Args: {args}, Keyword Args: {details_to_log}",
                level="info",
            )
        if "logger_fn" in kwargs:
            user_logger_fn = kwargs["logger_fn"]
        # INIT LOGGER - for user-specified integrations
        model = args[0] if len(args) > 0 else kwargs.get("model", None)
        call_type = original_function
        if (
            call_type == CallTypes.completion.value
            or call_type == CallTypes.acompletion.value
        ):
            messages = None
            if len(args) > 1:
                messages = args[1]
            elif kwargs.get("messages", None):
                messages = kwargs["messages"]
            ### PRE-CALL RULES ###
            if (
                isinstance(messages, list)
                and len(messages) > 0
                and isinstance(messages[0], dict)
                and "content" in messages[0]
            ):
                rules_obj.pre_call_rules(
                    input="".join(
                        m.get("content", "")
                        for m in messages
                        if "content" in m and isinstance(m["content"], str)
                    ),
                    model=model,
                )
        elif (
            call_type == CallTypes.embedding.value
            or call_type == CallTypes.aembedding.value
        ):
            messages = args[1] if len(args) > 1 else kwargs.get("input", None)
        elif (
            call_type == CallTypes.image_generation.value
            or call_type == CallTypes.aimage_generation.value
        ):
            messages = args[0] if len(args) > 0 else kwargs["prompt"]
        elif (
            call_type == CallTypes.moderation.value
            or call_type == CallTypes.amoderation.value
        ):
            messages = args[1] if len(args) > 1 else kwargs["input"]
        elif (
            call_type == CallTypes.atext_completion.value
            or call_type == CallTypes.text_completion.value
        ):
            messages = args[0] if len(args) > 0 else kwargs["prompt"]
        elif (
            call_type == CallTypes.rerank.value or call_type == CallTypes.arerank.value
        ):
            messages = kwargs.get("query")
        elif (
            call_type == CallTypes.atranscription.value
            or call_type == CallTypes.transcription.value
        ):
            _file_obj: FileTypes = args[1] if len(args) > 1 else kwargs["file"]
            file_checksum = (
                litellm.litellm_core_utils.audio_utils.utils.get_audio_file_name(
                    file_obj=_file_obj
                )
            )
            if "metadata" in kwargs:
                kwargs["metadata"]["file_checksum"] = file_checksum
            else:
                kwargs["metadata"] = {"file_checksum": file_checksum}
            messages = file_checksum
        elif (
            call_type == CallTypes.aspeech.value or call_type == CallTypes.speech.value
        ):
            messages = kwargs.get("input", "speech")
        else:
            messages = "default-message-value"
        stream = True if "stream" in kwargs and kwargs["stream"] is True else False
        logging_obj = LiteLLMLogging(
            model=model,
            messages=messages,
            stream=stream,
            litellm_call_id=kwargs["litellm_call_id"],
            litellm_trace_id=kwargs.get("litellm_trace_id"),
            function_id=function_id or "",
            call_type=call_type,
            start_time=start_time,
            dynamic_success_callbacks=dynamic_success_callbacks,
            dynamic_failure_callbacks=dynamic_failure_callbacks,
            dynamic_async_success_callbacks=dynamic_async_success_callbacks,
            dynamic_async_failure_callbacks=dynamic_async_failure_callbacks,
            kwargs=kwargs,
        )

        ## check if metadata is passed in
        litellm_params: Dict[str, Any] = {"api_base": ""}
        if "metadata" in kwargs:
            litellm_params["metadata"] = kwargs["metadata"]
        logging_obj.update_environment_variables(
            model=model,
            user="",
            optional_params={},
            litellm_params=litellm_params,
            stream_options=kwargs.get("stream_options", None),
        )
        return logging_obj, kwargs
    except Exception as e:
        verbose_logger.error(
            f"litellm.utils.py::function_setup() - [Non-Blocking] {traceback.format_exc()}; args - {args}; kwargs - {kwargs}"
        )
        raise e


async def _client_async_logging_helper(
    logging_obj: LiteLLMLoggingObject,
    result,
    start_time,
    end_time,
    is_completion_with_fallbacks: bool,
):
    if (
        is_completion_with_fallbacks is False
    ):  # don't log the parent event litellm.completion_with_fallbacks as a 'log_success_event', this will lead to double logging the same call - https://github.com/BerriAI/litellm/issues/7477
        print_verbose(
            f"Async Wrapper: Completed Call, calling async_success_handler: {logging_obj.async_success_handler}"
        )
        # check if user does not want this to be logged
        asyncio.create_task(
            logging_obj.async_success_handler(result, start_time, end_time)
        )
        logging_obj.handle_sync_success_callbacks_for_async_calls(
            result=result,
            start_time=start_time,
            end_time=end_time,
        )


def _get_wrapper_num_retries(
    kwargs: Dict[str, Any], exception: Exception
) -> Tuple[Optional[int], Dict[str, Any]]:
    """
    Get the number of retries from the kwargs and the retry policy.
    Used for the wrapper functions.
    """

    num_retries = kwargs.get("num_retries", None)
    if num_retries is None:
        num_retries = litellm.num_retries
    if kwargs.get("retry_policy", None):
        retry_policy_num_retries = get_num_retries_from_retry_policy(
            exception=exception,
            retry_policy=kwargs.get("retry_policy"),
        )
        kwargs["retry_policy"] = reset_retry_policy()
        if retry_policy_num_retries is not None:
            num_retries = retry_policy_num_retries

    return num_retries, kwargs


def _get_wrapper_timeout(
    kwargs: Dict[str, Any], exception: Exception
) -> Optional[Union[float, int, httpx.Timeout]]:
    """
    Get the timeout from the kwargs
    Used for the wrapper functions.
    """

    timeout = cast(
        Optional[Union[float, int, httpx.Timeout]], kwargs.get("timeout", None)
    )

    return timeout


def client(original_function):  # noqa: PLR0915
    rules_obj = Rules()

    def check_coroutine(value) -> bool:
        if inspect.iscoroutine(value):
            return True
        elif inspect.iscoroutinefunction(value):
            return True
        else:
            return False

    def post_call_processing(original_response, model, optional_params: Optional[dict]):
        try:
            if original_response is None:
                pass
            else:
                call_type = original_function.__name__
                if (
                    call_type == CallTypes.completion.value
                    or call_type == CallTypes.acompletion.value
                ):
                    is_coroutine = check_coroutine(original_response)
                    if is_coroutine is True:
                        pass
                    else:
                        if (
                            isinstance(original_response, ModelResponse)
                            and len(original_response.choices) > 0
                        ):
                            model_response: Optional[str] = original_response.choices[
                                0
                            ].message.content  # type: ignore
                            if model_response is not None:
                                ### POST-CALL RULES ###
                                rules_obj.post_call_rules(
                                    input=model_response, model=model
                                )
                                ### JSON SCHEMA VALIDATION ###
                                if litellm.enable_json_schema_validation is True:
                                    try:
                                        if (
                                            optional_params is not None
                                            and "response_format" in optional_params
                                            and optional_params["response_format"]
                                            is not None
                                        ):
                                            json_response_format: Optional[dict] = None
                                            if (
                                                isinstance(
                                                    optional_params["response_format"],
                                                    dict,
                                                )
                                                and optional_params[
                                                    "response_format"
                                                ].get("json_schema")
                                                is not None
                                            ):
                                                json_response_format = optional_params[
                                                    "response_format"
                                                ]
                                            elif _parsing._completions.is_basemodel_type(
                                                optional_params["response_format"]  # type: ignore
                                            ):
                                                json_response_format = (
                                                    type_to_response_format_param(
                                                        response_format=optional_params[
                                                            "response_format"
                                                        ]
                                                    )
                                                )
                                            if json_response_format is not None:
                                                litellm.litellm_core_utils.json_validation_rule.validate_schema(
                                                    schema=json_response_format[
                                                        "json_schema"
                                                    ]["schema"],
                                                    response=model_response,
                                                )
                                    except TypeError:
                                        pass
                                if (
                                    optional_params is not None
                                    and "response_format" in optional_params
                                    and isinstance(
                                        optional_params["response_format"], dict
                                    )
                                    and "type" in optional_params["response_format"]
                                    and optional_params["response_format"]["type"]
                                    == "json_object"
                                    and "response_schema"
                                    in optional_params["response_format"]
                                    and isinstance(
                                        optional_params["response_format"][
                                            "response_schema"
                                        ],
                                        dict,
                                    )
                                    and "enforce_validation"
                                    in optional_params["response_format"]
                                    and optional_params["response_format"][
                                        "enforce_validation"
                                    ]
                                    is True
                                ):
                                    # schema given, json response expected, and validation enforced
                                    litellm.litellm_core_utils.json_validation_rule.validate_schema(
                                        schema=optional_params["response_format"][
                                            "response_schema"
                                        ],
                                        response=model_response,
                                    )

        except Exception as e:
            raise e

    @wraps(original_function)
    def wrapper(*args, **kwargs):  # noqa: PLR0915
        # DO NOT MOVE THIS. It always needs to run first
        # Check if this is an async function. If so only execute the async function
        call_type = original_function.__name__
        if _is_async_request(kwargs):
            # [OPTIONAL] CHECK MAX RETRIES / REQUEST
            if litellm.num_retries_per_request is not None:
                # check if previous_models passed in as ['litellm_params']['metadata]['previous_models']
                previous_models = kwargs.get("metadata", {}).get(
                    "previous_models", None
                )
                if previous_models is not None:
                    if litellm.num_retries_per_request <= len(previous_models):
                        raise Exception("Max retries per request hit!")

            # MODEL CALL
            result = original_function(*args, **kwargs)
            if "stream" in kwargs and kwargs["stream"] is True:
                if (
                    "complete_response" in kwargs
                    and kwargs["complete_response"] is True
                ):
                    chunks = []
                    for idx, chunk in enumerate(result):
                        chunks.append(chunk)
                    return litellm.stream_chunk_builder(
                        chunks, messages=kwargs.get("messages", None)
                    )
                else:
                    return result

            return result

        # Prints Exactly what was passed to litellm function - don't execute any logic here - it should just print
        print_args_passed_to_litellm(original_function, args, kwargs)
        start_time = datetime.datetime.now()
        result = None
        logging_obj: Optional[LiteLLMLoggingObject] = kwargs.get(
            "litellm_logging_obj", None
        )

        # only set litellm_call_id if its not in kwargs
        if "litellm_call_id" not in kwargs:
            kwargs["litellm_call_id"] = str(uuid.uuid4())

        model: Optional[str] = args[0] if len(args) > 0 else kwargs.get("model", None)

        try:
            if logging_obj is None:
                logging_obj, kwargs = function_setup(
                    original_function.__name__, rules_obj, start_time, *args, **kwargs
                )
            kwargs["litellm_logging_obj"] = logging_obj
            _llm_caching_handler: LLMCachingHandler = LLMCachingHandler(
                original_function=original_function,
                request_kwargs=kwargs,
                start_time=start_time,
            )
            logging_obj._llm_caching_handler = _llm_caching_handler

            # CHECK FOR 'os.environ/' in kwargs
            for k, v in kwargs.items():
                if v is not None and isinstance(v, str) and v.startswith("os.environ/"):
                    kwargs[k] = litellm.get_secret(v)
            # [OPTIONAL] CHECK BUDGET
            if litellm.max_budget:
                if litellm._current_cost > litellm.max_budget:
                    raise BudgetExceededError(
                        current_cost=litellm._current_cost,
                        max_budget=litellm.max_budget,
                    )

            # [OPTIONAL] CHECK MAX RETRIES / REQUEST
            if litellm.num_retries_per_request is not None:
                # check if previous_models passed in as ['litellm_params']['metadata]['previous_models']
                previous_models = kwargs.get("metadata", {}).get(
                    "previous_models", None
                )
                if previous_models is not None:
                    if litellm.num_retries_per_request <= len(previous_models):
                        raise Exception("Max retries per request hit!")

            # [OPTIONAL] CHECK CACHE
            print_verbose(
                f"SYNC kwargs[caching]: {kwargs.get('caching', False)}; litellm.cache: {litellm.cache}; kwargs.get('cache')['no-cache']: {kwargs.get('cache', {}).get('no-cache', False)}"
            )
            # if caching is false or cache["no-cache"]==True, don't run this
            if (
                (
                    (
                        (
                            kwargs.get("caching", None) is None
                            and litellm.cache is not None
                        )
                        or kwargs.get("caching", False) is True
                    )
                    and kwargs.get("cache", {}).get("no-cache", False) is not True
                )
                and kwargs.get("aembedding", False) is not True
                and kwargs.get("atext_completion", False) is not True
                and kwargs.get("acompletion", False) is not True
                and kwargs.get("aimg_generation", False) is not True
                and kwargs.get("atranscription", False) is not True
                and kwargs.get("arerank", False) is not True
                and kwargs.get("_arealtime", False) is not True
            ):  # allow users to control returning cached responses from the completion function
                # checking cache
                verbose_logger.debug("INSIDE CHECKING SYNC CACHE")
                caching_handler_response: CachingHandlerResponse = (
                    _llm_caching_handler._sync_get_cache(
                        model=model or "",
                        original_function=original_function,
                        logging_obj=logging_obj,
                        start_time=start_time,
                        call_type=call_type,
                        kwargs=kwargs,
                        args=args,
                    )
                )

                if caching_handler_response.cached_result is not None:
                    return caching_handler_response.cached_result

            # CHECK MAX TOKENS
            if (
                kwargs.get("max_tokens", None) is not None
                and model is not None
                and litellm.modify_params
                is True  # user is okay with params being modified
                and (
                    call_type == CallTypes.acompletion.value
                    or call_type == CallTypes.completion.value
                )
            ):
                try:
                    base_model = model
                    if kwargs.get("hf_model_name", None) is not None:
                        base_model = f"huggingface/{kwargs.get('hf_model_name')}"
                    messages = None
                    if len(args) > 1:
                        messages = args[1]
                    elif kwargs.get("messages", None):
                        messages = kwargs["messages"]
                    user_max_tokens = kwargs.get("max_tokens")
                    modified_max_tokens = get_modified_max_tokens(
                        model=model,
                        base_model=base_model,
                        messages=messages,
                        user_max_tokens=user_max_tokens,
                        buffer_num=None,
                        buffer_perc=None,
                    )
                    kwargs["max_tokens"] = modified_max_tokens
                except Exception as e:
                    print_verbose(f"Error while checking max token limit: {str(e)}")
            # MODEL CALL
            result = original_function(*args, **kwargs)
            end_time = datetime.datetime.now()
            if "stream" in kwargs and kwargs["stream"] is True:
                if (
                    "complete_response" in kwargs
                    and kwargs["complete_response"] is True
                ):
                    chunks = []
                    for idx, chunk in enumerate(result):
                        chunks.append(chunk)
                    return litellm.stream_chunk_builder(
                        chunks, messages=kwargs.get("messages", None)
                    )
                else:
                    # RETURN RESULT
                    update_response_metadata(
                        result=result,
                        logging_obj=logging_obj,
                        model=model,
                        kwargs=kwargs,
                        start_time=start_time,
                        end_time=end_time,
                    )
                    return result
            elif "acompletion" in kwargs and kwargs["acompletion"] is True:
                return result
            elif "aembedding" in kwargs and kwargs["aembedding"] is True:
                return result
            elif "aimg_generation" in kwargs and kwargs["aimg_generation"] is True:
                return result
            elif "atranscription" in kwargs and kwargs["atranscription"] is True:
                return result
            elif "aspeech" in kwargs and kwargs["aspeech"] is True:
                return result
            elif asyncio.iscoroutine(result):  # bubble up to relevant async function
                return result

            ### POST-CALL RULES ###
            post_call_processing(
                original_response=result,
                model=model or None,
                optional_params=kwargs,
            )

            # [OPTIONAL] ADD TO CACHE
            _llm_caching_handler.sync_set_cache(
                result=result,
                args=args,
                kwargs=kwargs,
            )

            # LOG SUCCESS - handle streaming success logging in the _next_ object, remove `handle_success` once it's deprecated
            verbose_logger.info("Wrapper: Completed Call, calling success_handler")
            executor.submit(
                logging_obj.success_handler,
                result,
                start_time,
                end_time,
            )
            # RETURN RESULT
            update_response_metadata(
                result=result,
                logging_obj=logging_obj,
                model=model,
                kwargs=kwargs,
                start_time=start_time,
                end_time=end_time,
            )
            return result
        except Exception as e:
            call_type = original_function.__name__
            if call_type == CallTypes.completion.value:
                num_retries = (
                    kwargs.get("num_retries", None) or litellm.num_retries or None
                )
                if kwargs.get("retry_policy", None):
                    num_retries = get_num_retries_from_retry_policy(
                        exception=e,
                        retry_policy=kwargs.get("retry_policy"),
                    )
                    kwargs["retry_policy"] = (
                        reset_retry_policy()
                    )  # prevent infinite loops
                litellm.num_retries = (
                    None  # set retries to None to prevent infinite loops
                )
                context_window_fallback_dict = kwargs.get(
                    "context_window_fallback_dict", {}
                )

                _is_litellm_router_call = "model_group" in kwargs.get(
                    "metadata", {}
                )  # check if call from litellm.router/proxy
                if (
                    num_retries and not _is_litellm_router_call
                ):  # only enter this if call is not from litellm router/proxy. router has it's own logic for retrying
                    if (
                        isinstance(e, openai.APIError)
                        or isinstance(e, openai.Timeout)
                        or isinstance(e, openai.APIConnectionError)
                    ):
                        kwargs["num_retries"] = num_retries
                        return litellm.completion_with_retries(*args, **kwargs)
                elif (
                    isinstance(e, litellm.exceptions.ContextWindowExceededError)
                    and context_window_fallback_dict
                    and model in context_window_fallback_dict
                    and not _is_litellm_router_call
                ):
                    if len(args) > 0:
                        args[0] = context_window_fallback_dict[model]  # type: ignore
                    else:
                        kwargs["model"] = context_window_fallback_dict[model]
                    return original_function(*args, **kwargs)
            traceback_exception = traceback.format_exc()
            end_time = datetime.datetime.now()

            # LOG FAILURE - handle streaming failure logging in the _next_ object, remove `handle_failure` once it's deprecated
            if logging_obj:
                logging_obj.failure_handler(
                    e, traceback_exception, start_time, end_time
                )  # DO NOT MAKE THREADED - router retry fallback relies on this!
            raise e

    @wraps(original_function)
    async def wrapper_async(*args, **kwargs):  # noqa: PLR0915
        print_args_passed_to_litellm(original_function, args, kwargs)
        start_time = datetime.datetime.now()
        result = None
        logging_obj: Optional[LiteLLMLoggingObject] = kwargs.get(
            "litellm_logging_obj", None
        )
        _llm_caching_handler: LLMCachingHandler = LLMCachingHandler(
            original_function=original_function,
            request_kwargs=kwargs,
            start_time=start_time,
        )
        # only set litellm_call_id if its not in kwargs
        call_type = original_function.__name__
        if "litellm_call_id" not in kwargs:
            kwargs["litellm_call_id"] = str(uuid.uuid4())

        model: Optional[str] = args[0] if len(args) > 0 else kwargs.get("model", None)
        is_completion_with_fallbacks = kwargs.get("fallbacks") is not None

        try:
            if logging_obj is None:
                logging_obj, kwargs = function_setup(
                    original_function.__name__, rules_obj, start_time, *args, **kwargs
                )
            kwargs["litellm_logging_obj"] = logging_obj
            logging_obj._llm_caching_handler = _llm_caching_handler
            # [OPTIONAL] CHECK BUDGET
            if litellm.max_budget:
                if litellm._current_cost > litellm.max_budget:
                    raise BudgetExceededError(
                        current_cost=litellm._current_cost,
                        max_budget=litellm.max_budget,
                    )

            # [OPTIONAL] CHECK CACHE
            print_verbose(
                f"ASYNC kwargs[caching]: {kwargs.get('caching', False)}; litellm.cache: {litellm.cache}; kwargs.get('cache'): {kwargs.get('cache', None)}"
            )
            _caching_handler_response: CachingHandlerResponse = (
                await _llm_caching_handler._async_get_cache(
                    model=model or "",
                    original_function=original_function,
                    logging_obj=logging_obj,
                    start_time=start_time,
                    call_type=call_type,
                    kwargs=kwargs,
                    args=args,
                )
            )
            if (
                _caching_handler_response.cached_result is not None
                and _caching_handler_response.final_embedding_cached_response is None
            ):
                return _caching_handler_response.cached_result

            elif _caching_handler_response.embedding_all_elements_cache_hit is True:
                return _caching_handler_response.final_embedding_cached_response

            # MODEL CALL
            result = await original_function(*args, **kwargs)
            end_time = datetime.datetime.now()
            if "stream" in kwargs and kwargs["stream"] is True:
                if (
                    "complete_response" in kwargs
                    and kwargs["complete_response"] is True
                ):
                    chunks = []
                    for idx, chunk in enumerate(result):
                        chunks.append(chunk)
                    return litellm.stream_chunk_builder(
                        chunks, messages=kwargs.get("messages", None)
                    )
                else:
                    update_response_metadata(
                        result=result,
                        logging_obj=logging_obj,
                        model=model,
                        kwargs=kwargs,
                        start_time=start_time,
                        end_time=end_time,
                    )
                    return result
            elif call_type == CallTypes.arealtime.value:
                return result
            ### POST-CALL RULES ###
            post_call_processing(
                original_response=result, model=model, optional_params=kwargs
            )

            ## Add response to cache
            await _llm_caching_handler.async_set_cache(
                result=result,
                original_function=original_function,
                kwargs=kwargs,
                args=args,
            )

            # LOG SUCCESS - handle streaming success logging in the _next_ object
            asyncio.create_task(
                _client_async_logging_helper(
                    logging_obj=logging_obj,
                    result=result,
                    start_time=start_time,
                    end_time=end_time,
                    is_completion_with_fallbacks=is_completion_with_fallbacks,
                )
            )
            logging_obj.handle_sync_success_callbacks_for_async_calls(
                result=result,
                start_time=start_time,
                end_time=end_time,
            )
            # REBUILD EMBEDDING CACHING
            if (
                isinstance(result, EmbeddingResponse)
                and _caching_handler_response.final_embedding_cached_response
                is not None
            ):
                return _llm_caching_handler._combine_cached_embedding_response_with_api_result(
                    _caching_handler_response=_caching_handler_response,
                    embedding_response=result,
                    start_time=start_time,
                    end_time=end_time,
                )

            update_response_metadata(
                result=result,
                logging_obj=logging_obj,
                model=model,
                kwargs=kwargs,
                start_time=start_time,
                end_time=end_time,
            )

            return result
        except Exception as e:
            traceback_exception = traceback.format_exc()
            end_time = datetime.datetime.now()
            if logging_obj:
                try:
                    logging_obj.failure_handler(
                        e, traceback_exception, start_time, end_time
                    )  # DO NOT MAKE THREADED - router retry fallback relies on this!
                except Exception as e:
                    raise e
                try:
                    await logging_obj.async_failure_handler(
                        e, traceback_exception, start_time, end_time
                    )
                except Exception as e:
                    raise e

            call_type = original_function.__name__
            num_retries, kwargs = _get_wrapper_num_retries(kwargs=kwargs, exception=e)
            if call_type == CallTypes.acompletion.value:
                context_window_fallback_dict = kwargs.get(
                    "context_window_fallback_dict", {}
                )

                _is_litellm_router_call = "model_group" in kwargs.get(
                    "metadata", {}
                )  # check if call from litellm.router/proxy

                if (
                    num_retries and not _is_litellm_router_call
                ):  # only enter this if call is not from litellm router/proxy. router has it's own logic for retrying

                    try:
                        litellm.num_retries = (
                            None  # set retries to None to prevent infinite loops
                        )
                        kwargs["num_retries"] = num_retries
                        kwargs["original_function"] = original_function
                        if isinstance(
                            e, openai.RateLimitError
                        ):  # rate limiting specific error
                            kwargs["retry_strategy"] = "exponential_backoff_retry"
                        elif isinstance(e, openai.APIError):  # generic api error
                            kwargs["retry_strategy"] = "constant_retry"
                        return await litellm.acompletion_with_retries(*args, **kwargs)
                    except Exception:
                        pass
                elif (
                    isinstance(e, litellm.exceptions.ContextWindowExceededError)
                    and context_window_fallback_dict
                    and model in context_window_fallback_dict
                ):

                    if len(args) > 0:
                        args[0] = context_window_fallback_dict[model]  # type: ignore
                    else:
                        kwargs["model"] = context_window_fallback_dict[model]
                    return await original_function(*args, **kwargs)

            setattr(
                e, "num_retries", num_retries
            )  ## IMPORTANT: returns the deployment's num_retries to the router

            timeout = _get_wrapper_timeout(kwargs=kwargs, exception=e)
            setattr(e, "timeout", timeout)
            raise e

    is_coroutine = inspect.iscoroutinefunction(original_function)

    # Return the appropriate wrapper based on the original function type
    if is_coroutine:
        return wrapper_async
    else:
        return wrapper


def _is_async_request(
    kwargs: Optional[dict],
    is_pass_through: bool = False,
) -> bool:
    """
    Returns True if the call type is an internal async request.

    eg. litellm.acompletion, litellm.aimage_generation, litellm.acreate_batch, litellm._arealtime

    Args:
        kwargs (dict): The kwargs passed to the litellm function
        is_pass_through (bool): Whether the call is a pass-through call. By default all pass through calls are async.
    """
    if kwargs is None:
        return False
    if (
        kwargs.get("acompletion", False) is True
        or kwargs.get("aembedding", False) is True
        or kwargs.get("aimg_generation", False) is True
        or kwargs.get("amoderation", False) is True
        or kwargs.get("atext_completion", False) is True
        or kwargs.get("atranscription", False) is True
        or kwargs.get("arerank", False) is True
        or kwargs.get("_arealtime", False) is True
        or kwargs.get("acreate_batch", False) is True
        or kwargs.get("acreate_fine_tuning_job", False) is True
        or is_pass_through is True
    ):
        return True
    return False


def update_response_metadata(
    result: Any,
    logging_obj: LiteLLMLoggingObject,
    model: Optional[str],
    kwargs: dict,
    start_time: datetime.datetime,
    end_time: datetime.datetime,
) -> None:
    """
    Updates response metadata, adds the following:
        - response._hidden_params
        - response._hidden_params["litellm_overhead_time_ms"]
        - response.response_time_ms
    """
    if result is None:
        return

    metadata = ResponseMetadata(result)
    metadata.set_hidden_params(logging_obj=logging_obj, model=model, kwargs=kwargs)
    metadata.set_timing_metrics(
        start_time=start_time, end_time=end_time, logging_obj=logging_obj
    )
    metadata.apply()


def _select_tokenizer(
    model: str, custom_tokenizer: Optional[CustomHuggingfaceTokenizer] = None
):
    if custom_tokenizer is not None:
        _tokenizer = create_pretrained_tokenizer(
            identifier=custom_tokenizer["identifier"],
            revision=custom_tokenizer["revision"],
            auth_token=custom_tokenizer["auth_token"],
        )
        return _tokenizer
    return _select_tokenizer_helper(model=model)


@lru_cache(maxsize=128)
def _select_tokenizer_helper(model: str) -> SelectTokenizerResponse:

    if litellm.disable_hf_tokenizer_download is True:
        return _return_openai_tokenizer(model)

    try:
        result = _return_huggingface_tokenizer(model)
        if result is not None:
            return result
    except Exception as e:
        verbose_logger.debug(f"Error selecting tokenizer: {e}")

    # default - tiktoken
    return _return_openai_tokenizer(model)


def _return_openai_tokenizer(model: str) -> SelectTokenizerResponse:
    return {"type": "openai_tokenizer", "tokenizer": encoding}


def _return_huggingface_tokenizer(model: str) -> Optional[SelectTokenizerResponse]:
    if model in litellm.cohere_models and "command-r" in model:
        # cohere
        cohere_tokenizer = Tokenizer.from_pretrained(
            "Xenova/c4ai-command-r-v01-tokenizer"
        )
        return {"type": "huggingface_tokenizer", "tokenizer": cohere_tokenizer}
    # anthropic
    elif model in litellm.anthropic_models and "claude-3" not in model:
        claude_tokenizer = Tokenizer.from_str(claude_json_str)
        return {"type": "huggingface_tokenizer", "tokenizer": claude_tokenizer}
    # llama2
    elif "llama-2" in model.lower() or "replicate" in model.lower():
        tokenizer = Tokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
        return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
    # llama3
    elif "llama-3" in model.lower():
        tokenizer = Tokenizer.from_pretrained("Xenova/llama-3-tokenizer")
        return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
    else:
        return None


def encode(model="", text="", custom_tokenizer: Optional[dict] = None):
    """
    Encodes the given text using the specified model.

    Args:
        model (str): The name of the model to use for tokenization.
        custom_tokenizer (Optional[dict]): A custom tokenizer created with the `create_pretrained_tokenizer` or `create_tokenizer` method. Must be a dictionary with a string value for `type` and Tokenizer for `tokenizer`. Default is None.
        text (str): The text to be encoded.

    Returns:
        enc: The encoded text.
    """
    tokenizer_json = custom_tokenizer or _select_tokenizer(model=model)
    if isinstance(tokenizer_json["tokenizer"], Encoding):
        enc = tokenizer_json["tokenizer"].encode(text, disallowed_special=())
    else:
        enc = tokenizer_json["tokenizer"].encode(text)
    return enc


def decode(model="", tokens: List[int] = [], custom_tokenizer: Optional[dict] = None):
    tokenizer_json = custom_tokenizer or _select_tokenizer(model=model)
    dec = tokenizer_json["tokenizer"].decode(tokens)
    return dec


def openai_token_counter(  # noqa: PLR0915
    messages: Optional[list] = None,
    model="gpt-3.5-turbo-0613",
    text: Optional[str] = None,
    is_tool_call: Optional[bool] = False,
    tools: Optional[List[ChatCompletionToolParam]] = None,
    tool_choice: Optional[ChatCompletionNamedToolChoiceParam] = None,
    count_response_tokens: Optional[
        bool
    ] = False,  # Flag passed from litellm.stream_chunk_builder, to indicate counting tokens for LLM Response. We need this because for LLM input we add +3 tokens per message - based on OpenAI's token counter
    use_default_image_token_count: Optional[bool] = False,
):
    """
    Return the number of tokens used by a list of messages.

    Borrowed from https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb.
    """
    print_verbose(f"LiteLLM: Utils - Counting tokens for OpenAI model={model}")
    try:
        if "gpt-4o" in model:
            encoding = tiktoken.get_encoding("o200k_base")
        else:
            encoding = tiktoken.encoding_for_model(model)
    except KeyError:
        print_verbose("Warning: model not found. Using cl100k_base encoding.")
        encoding = tiktoken.get_encoding("cl100k_base")
    if model == "gpt-3.5-turbo-0301":
        tokens_per_message = (
            4  # every message follows <|start|>{role/name}\n{content}<|end|>\n
        )
        tokens_per_name = -1  # if there's a name, the role is omitted
    elif model in litellm.open_ai_chat_completion_models:
        tokens_per_message = 3
        tokens_per_name = 1
    elif model in litellm.azure_llms:
        tokens_per_message = 3
        tokens_per_name = 1
    else:
        raise NotImplementedError(
            f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens."""
        )
    num_tokens = 0
    includes_system_message = False

    if is_tool_call and text is not None:
        # if it's a tool call we assembled 'text' in token_counter()
        num_tokens = len(encoding.encode(text, disallowed_special=()))
    elif messages is not None:
        for message in messages:
            num_tokens += tokens_per_message
            if message.get("role", None) == "system":
                includes_system_message = True
            for key, value in message.items():
                if isinstance(value, str):
                    num_tokens += len(encoding.encode(value, disallowed_special=()))
                    if key == "name":
                        num_tokens += tokens_per_name
                elif isinstance(value, List):
                    for c in value:
                        if c["type"] == "text":
                            text += c["text"]
                            num_tokens += len(
                                encoding.encode(c["text"], disallowed_special=())
                            )
                        elif c["type"] == "image_url":
                            if isinstance(c["image_url"], dict):
                                image_url_dict = c["image_url"]
                                detail = image_url_dict.get("detail", "auto")
                                url = image_url_dict.get("url")
                                num_tokens += calculate_img_tokens(
                                    data=url,
                                    mode=detail,
                                    use_default_image_token_count=use_default_image_token_count
                                    or False,
                                )
                            elif isinstance(c["image_url"], str):
                                image_url_str = c["image_url"]
                                num_tokens += calculate_img_tokens(
                                    data=image_url_str,
                                    mode="auto",
                                    use_default_image_token_count=use_default_image_token_count
                                    or False,
                                )
    elif text is not None and count_response_tokens is True:
        # This is the case where we need to count tokens for a streamed response. We should NOT add +3 tokens per message in this branch
        num_tokens = len(encoding.encode(text, disallowed_special=()))
        return num_tokens
    elif text is not None:
        num_tokens = len(encoding.encode(text, disallowed_special=()))
    num_tokens += 3  # every reply is primed with <|start|>assistant<|message|>

    if tools:
        num_tokens += len(encoding.encode(_format_function_definitions(tools)))
        num_tokens += 9  # Additional tokens for function definition of tools
    # If there's a system message and tools are present, subtract four tokens
    if tools and includes_system_message:
        num_tokens -= 4
    # If tool_choice is 'none', add one token.
    # If it's an object, add 4 + the number of tokens in the function name.
    # If it's undefined or 'auto', don't add anything.
    if tool_choice == "none":
        num_tokens += 1
    elif isinstance(tool_choice, dict):
        num_tokens += 7
        num_tokens += len(encoding.encode(tool_choice["function"]["name"]))

    return num_tokens


def create_pretrained_tokenizer(
    identifier: str, revision="main", auth_token: Optional[str] = None
):
    """
    Creates a tokenizer from an existing file on a HuggingFace repository to be used with `token_counter`.

    Args:
    identifier (str): The identifier of a Model on the Hugging Face Hub, that contains a tokenizer.json file
    revision (str, defaults to main): A branch or commit id
    auth_token (str, optional, defaults to None): An optional auth token used to access private repositories on the Hugging Face Hub

    Returns:
    dict: A dictionary with the tokenizer and its type.
    """

    try:
        tokenizer = Tokenizer.from_pretrained(
            identifier, revision=revision, auth_token=auth_token  # type: ignore
        )
    except Exception as e:
        verbose_logger.error(
            f"Error creating pretrained tokenizer: {e}. Defaulting to version without 'auth_token'."
        )
        tokenizer = Tokenizer.from_pretrained(identifier, revision=revision)
    return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}


def create_tokenizer(json: str):
    """
    Creates a tokenizer from a valid JSON string for use with `token_counter`.

    Args:
    json (str): A valid JSON string representing a previously serialized tokenizer

    Returns:
    dict: A dictionary with the tokenizer and its type.
    """

    tokenizer = Tokenizer.from_str(json)
    return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}


def _format_function_definitions(tools):
    """Formats tool definitions in the format that OpenAI appears to use.
    Based on https://github.com/forestwanglin/openai-java/blob/main/jtokkit/src/main/java/xyz/felh/openai/jtokkit/utils/TikTokenUtils.java
    """
    lines = []
    lines.append("namespace functions {")
    lines.append("")
    for tool in tools:
        function = tool.get("function")
        if function_description := function.get("description"):
            lines.append(f"// {function_description}")
        function_name = function.get("name")
        parameters = function.get("parameters", {})
        properties = parameters.get("properties")
        if properties and properties.keys():
            lines.append(f"type {function_name} = (_: {{")
            lines.append(_format_object_parameters(parameters, 0))
            lines.append("}) => any;")
        else:
            lines.append(f"type {function_name} = () => any;")
        lines.append("")
    lines.append("} // namespace functions")
    return "\n".join(lines)


def _format_object_parameters(parameters, indent):
    properties = parameters.get("properties")
    if not properties:
        return ""
    required_params = parameters.get("required", [])
    lines = []
    for key, props in properties.items():
        description = props.get("description")
        if description:
            lines.append(f"// {description}")
        question = "?"
        if required_params and key in required_params:
            question = ""
        lines.append(f"{key}{question}: {_format_type(props, indent)},")
    return "\n".join([" " * max(0, indent) + line for line in lines])


def _format_type(props, indent):
    type = props.get("type")
    if type == "string":
        if "enum" in props:
            return " | ".join([f'"{item}"' for item in props["enum"]])
        return "string"
    elif type == "array":
        # items is required, OpenAI throws an error if it's missing
        return f"{_format_type(props['items'], indent)}[]"
    elif type == "object":
        return f"{{\n{_format_object_parameters(props, indent + 2)}\n}}"
    elif type in ["integer", "number"]:
        if "enum" in props:
            return " | ".join([f'"{item}"' for item in props["enum"]])
        return "number"
    elif type == "boolean":
        return "boolean"
    elif type == "null":
        return "null"
    else:
        # This is a guess, as an empty string doesn't yield the expected token count
        return "any"


def token_counter(
    model="",
    custom_tokenizer: Optional[Union[dict, SelectTokenizerResponse]] = None,
    text: Optional[Union[str, List[str]]] = None,
    messages: Optional[List] = None,
    count_response_tokens: Optional[bool] = False,
    tools: Optional[List[ChatCompletionToolParam]] = None,
    tool_choice: Optional[ChatCompletionNamedToolChoiceParam] = None,
    use_default_image_token_count: Optional[bool] = False,
) -> int:
    """
    Count the number of tokens in a given text using a specified model.

    Args:
    model (str): The name of the model to use for tokenization. Default is an empty string.
    custom_tokenizer (Optional[dict]): A custom tokenizer created with the `create_pretrained_tokenizer` or `create_tokenizer` method. Must be a dictionary with a string value for `type` and Tokenizer for `tokenizer`. Default is None.
    text (str): The raw text string to be passed to the model. Default is None.
    messages (Optional[List[Dict[str, str]]]): Alternative to passing in text. A list of dictionaries representing messages with "role" and "content" keys. Default is None.

    Returns:
    int: The number of tokens in the text.
    """
    # use tiktoken, anthropic, cohere, llama2, or llama3's tokenizer depending on the model
    is_tool_call = False
    num_tokens = 0
    if text is None:
        if messages is not None:
            print_verbose(f"token_counter messages received: {messages}")
            text = ""
            for message in messages:
                if message.get("content", None) is not None:
                    content = message.get("content")
                    if isinstance(content, str):
                        text += message["content"]
                    elif isinstance(content, List):
                        for c in content:
                            if c["type"] == "text":
                                text += c["text"]
                            elif c["type"] == "image_url":
                                if isinstance(c["image_url"], dict):
                                    image_url_dict = c["image_url"]
                                    detail = image_url_dict.get("detail", "auto")
                                    url = image_url_dict.get("url")
                                    num_tokens += calculate_img_tokens(
                                        data=url,
                                        mode=detail,
                                        use_default_image_token_count=use_default_image_token_count
                                        or False,
                                    )
                                elif isinstance(c["image_url"], str):
                                    image_url_str = c["image_url"]
                                    num_tokens += calculate_img_tokens(
                                        data=image_url_str,
                                        mode="auto",
                                        use_default_image_token_count=use_default_image_token_count
                                        or False,
                                    )
                if message.get("tool_calls"):
                    is_tool_call = True
                    for tool_call in message["tool_calls"]:
                        if "function" in tool_call:
                            function_arguments = tool_call["function"]["arguments"]
                            text += function_arguments
        else:
            raise ValueError("text and messages cannot both be None")
    elif isinstance(text, List):
        text = "".join(t for t in text if isinstance(t, str))
    elif isinstance(text, str):
        count_response_tokens = True  # user just trying to count tokens for a text. don't add the chat_ml +3 tokens to this

    if model is not None or custom_tokenizer is not None:
        tokenizer_json = custom_tokenizer or _select_tokenizer(model=model)
        if tokenizer_json["type"] == "huggingface_tokenizer":
            enc = tokenizer_json["tokenizer"].encode(text)
            num_tokens = len(enc.ids)
        elif tokenizer_json["type"] == "openai_tokenizer":
            if (
                model in litellm.open_ai_chat_completion_models
                or model in litellm.azure_llms
            ):
                if model in litellm.azure_llms:
                    # azure llms use gpt-35-turbo instead of gpt-3.5-turbo 🙃
                    model = model.replace("-35", "-3.5")

                print_verbose(
                    f"Token Counter - using OpenAI token counter, for model={model}"
                )
                num_tokens = openai_token_counter(
                    text=text,  # type: ignore
                    model=model,
                    messages=messages,
                    is_tool_call=is_tool_call,
                    count_response_tokens=count_response_tokens,
                    tools=tools,
                    tool_choice=tool_choice,
                    use_default_image_token_count=use_default_image_token_count
                    or False,
                )
            else:
                print_verbose(
                    f"Token Counter - using generic token counter, for model={model}"
                )
                num_tokens = openai_token_counter(
                    text=text,  # type: ignore
                    model="gpt-3.5-turbo",
                    messages=messages,
                    is_tool_call=is_tool_call,
                    count_response_tokens=count_response_tokens,
                    tools=tools,
                    tool_choice=tool_choice,
                    use_default_image_token_count=use_default_image_token_count
                    or False,
                )
    else:
        num_tokens = len(encoding.encode(text, disallowed_special=()))  # type: ignore
    return num_tokens


def supports_httpx_timeout(custom_llm_provider: str) -> bool:
    """
    Helper function to know if a provider implementation supports httpx timeout
    """
    supported_providers = ["openai", "azure", "bedrock"]

    if custom_llm_provider in supported_providers:
        return True

    return False


def supports_system_messages(model: str, custom_llm_provider: Optional[str]) -> bool:
    """
    Check if the given model supports system messages and return a boolean value.

    Parameters:
    model (str): The model name to be checked.
    custom_llm_provider (str): The provider to be checked.

    Returns:
    bool: True if the model supports system messages, False otherwise.

    Raises:
    Exception: If the given model is not found in model_prices_and_context_window.json.
    """
    return _supports_factory(
        model=model,
        custom_llm_provider=custom_llm_provider,
        key="supports_system_messages",
    )


def supports_response_schema(
    model: str, custom_llm_provider: Optional[str] = None
) -> bool:
    """
    Check if the given model + provider supports 'response_schema' as a param.

    Parameters:
    model (str): The model name to be checked.
    custom_llm_provider (str): The provider to be checked.

    Returns:
    bool: True if the model supports response_schema, False otherwise.

    Does not raise error. Defaults to 'False'. Outputs logging.error.
    """
    ## GET LLM PROVIDER ##
    try:
        model, custom_llm_provider, _, _ = get_llm_provider(
            model=model, custom_llm_provider=custom_llm_provider
        )
    except Exception as e:
        verbose_logger.debug(
            f"Model not found or error in checking response schema support. You passed model={model}, custom_llm_provider={custom_llm_provider}. Error: {str(e)}"
        )
        return False

    # providers that globally support response schema
    PROVIDERS_GLOBALLY_SUPPORT_RESPONSE_SCHEMA = [
        litellm.LlmProviders.PREDIBASE,
        litellm.LlmProviders.FIREWORKS_AI,
    ]

    if custom_llm_provider in PROVIDERS_GLOBALLY_SUPPORT_RESPONSE_SCHEMA:
        return True
    return _supports_factory(
        model=model,
        custom_llm_provider=custom_llm_provider,
        key="supports_response_schema",
    )


def supports_function_calling(
    model: str, custom_llm_provider: Optional[str] = None
) -> bool:
    """
    Check if the given model supports function calling and return a boolean value.

    Parameters:
    model (str): The model name to be checked.
    custom_llm_provider (Optional[str]): The provider to be checked.

    Returns:
    bool: True if the model supports function calling, False otherwise.

    Raises:
    Exception: If the given model is not found or there's an error in retrieval.
    """
    return _supports_factory(
        model=model,
        custom_llm_provider=custom_llm_provider,
        key="supports_function_calling",
    )


def supports_tool_choice(model: str, custom_llm_provider: Optional[str] = None) -> bool:
    """
    Check if the given model supports `tool_choice` and return a boolean value.
    """
    return _supports_factory(
        model=model, custom_llm_provider=custom_llm_provider, key="supports_tool_choice"
    )


def _supports_factory(model: str, custom_llm_provider: Optional[str], key: str) -> bool:
    """
    Check if the given model supports function calling and return a boolean value.

    Parameters:
    model (str): The model name to be checked.
    custom_llm_provider (Optional[str]): The provider to be checked.

    Returns:
    bool: True if the model supports function calling, False otherwise.

    Raises:
    Exception: If the given model is not found or there's an error in retrieval.
    """
    try:
        model, custom_llm_provider, _, _ = litellm.get_llm_provider(
            model=model, custom_llm_provider=custom_llm_provider
        )

        model_info = _get_model_info_helper(
            model=model, custom_llm_provider=custom_llm_provider
        )

        if model_info.get(key, False) is True:
            return True
        return False
    except Exception as e:
        verbose_logger.debug(
            f"Model not found or error in checking {key} support. You passed model={model}, custom_llm_provider={custom_llm_provider}. Error: {str(e)}"
        )

        provider_info = get_provider_info(
            model=model, custom_llm_provider=custom_llm_provider
        )

        if provider_info is not None and provider_info.get(key, False) is True:
            return True
        return False


def supports_audio_input(model: str, custom_llm_provider: Optional[str] = None) -> bool:
    """Check if a given model supports audio input in a chat completion call"""
    return _supports_factory(
        model=model, custom_llm_provider=custom_llm_provider, key="supports_audio_input"
    )


def supports_pdf_input(model: str, custom_llm_provider: Optional[str] = None) -> bool:
    """Check if a given model supports pdf input in a chat completion call"""
    return _supports_factory(
        model=model, custom_llm_provider=custom_llm_provider, key="supports_pdf_input"
    )


def supports_audio_output(
    model: str, custom_llm_provider: Optional[str] = None
) -> bool:
    """Check if a given model supports audio output in a chat completion call"""
    return _supports_factory(
        model=model, custom_llm_provider=custom_llm_provider, key="supports_audio_input"
    )


def supports_prompt_caching(
    model: str, custom_llm_provider: Optional[str] = None
) -> bool:
    """
    Check if the given model supports prompt caching and return a boolean value.

    Parameters:
    model (str): The model name to be checked.
    custom_llm_provider (Optional[str]): The provider to be checked.

    Returns:
    bool: True if the model supports prompt caching, False otherwise.

    Raises:
    Exception: If the given model is not found or there's an error in retrieval.
    """
    return _supports_factory(
        model=model,
        custom_llm_provider=custom_llm_provider,
        key="supports_prompt_caching",
    )


def supports_vision(model: str, custom_llm_provider: Optional[str] = None) -> bool:
    """
    Check if the given model supports vision and return a boolean value.

    Parameters:
    model (str): The model name to be checked.
    custom_llm_provider (Optional[str]): The provider to be checked.

    Returns:
    bool: True if the model supports vision, False otherwise.
    """
    return _supports_factory(
        model=model,
        custom_llm_provider=custom_llm_provider,
        key="supports_vision",
    )


def supports_embedding_image_input(
    model: str, custom_llm_provider: Optional[str] = None
) -> bool:
    """
    Check if the given model supports embedding image input and return a boolean value.
    """
    return _supports_factory(
        model=model,
        custom_llm_provider=custom_llm_provider,
        key="supports_embedding_image_input",
    )


def supports_parallel_function_calling(model: str):
    """
    Check if the given model supports parallel function calling and return True if it does, False otherwise.

    Parameters:
        model (str): The model to check for support of parallel function calling.

    Returns:
        bool: True if the model supports parallel function calling, False otherwise.

    Raises:
        Exception: If the model is not found in the model_cost dictionary.
    """
    if model in litellm.model_cost:
        model_info = litellm.model_cost[model]
        if model_info.get("supports_parallel_function_calling", False) is True:
            return True
        return False
    else:
        raise Exception(
            f"Model not supports parallel function calling. You passed model={model}."
        )


####### HELPER FUNCTIONS ################
def _update_dictionary(existing_dict: Dict, new_dict: dict) -> dict:
    for k, v in new_dict.items():
        existing_dict[k] = v

    return existing_dict


def register_model(model_cost: Union[str, dict]):  # noqa: PLR0915
    """
    Register new / Override existing models (and their pricing) to specific providers.
    Provide EITHER a model cost dictionary or a url to a hosted json blob
    Example usage:
    model_cost_dict = {
        "gpt-4": {
            "max_tokens": 8192,
            "input_cost_per_token": 0.00003,
            "output_cost_per_token": 0.00006,
            "litellm_provider": "openai",
            "mode": "chat"
        },
    }
    """

    loaded_model_cost = {}
    if isinstance(model_cost, dict):
        loaded_model_cost = model_cost
    elif isinstance(model_cost, str):
        loaded_model_cost = litellm.get_model_cost_map(url=model_cost)

    for key, value in loaded_model_cost.items():
        ## get model info ##
        try:
            existing_model: dict = cast(dict, get_model_info(model=key))
            model_cost_key = existing_model["key"]
        except Exception:
            existing_model = {}
            model_cost_key = key
        ## override / add new keys to the existing model cost dictionary
        updated_dictionary = _update_dictionary(existing_model, value)
        litellm.model_cost.setdefault(model_cost_key, {}).update(updated_dictionary)
        verbose_logger.debug(
            f"added/updated model={model_cost_key} in litellm.model_cost: {model_cost_key}"
        )
        # add new model names to provider lists
        if value.get("litellm_provider") == "openai":
            if key not in litellm.open_ai_chat_completion_models:
                litellm.open_ai_chat_completion_models.append(key)
        elif value.get("litellm_provider") == "text-completion-openai":
            if key not in litellm.open_ai_text_completion_models:
                litellm.open_ai_text_completion_models.append(key)
        elif value.get("litellm_provider") == "cohere":
            if key not in litellm.cohere_models:
                litellm.cohere_models.append(key)
        elif value.get("litellm_provider") == "anthropic":
            if key not in litellm.anthropic_models:
                litellm.anthropic_models.append(key)
        elif value.get("litellm_provider") == "openrouter":
            split_string = key.split("/", 1)
            if key not in litellm.openrouter_models:
                litellm.openrouter_models.append(split_string[1])
        elif value.get("litellm_provider") == "vertex_ai-text-models":
            if key not in litellm.vertex_text_models:
                litellm.vertex_text_models.append(key)
        elif value.get("litellm_provider") == "vertex_ai-code-text-models":
            if key not in litellm.vertex_code_text_models:
                litellm.vertex_code_text_models.append(key)
        elif value.get("litellm_provider") == "vertex_ai-chat-models":
            if key not in litellm.vertex_chat_models:
                litellm.vertex_chat_models.append(key)
        elif value.get("litellm_provider") == "vertex_ai-code-chat-models":
            if key not in litellm.vertex_code_chat_models:
                litellm.vertex_code_chat_models.append(key)
        elif value.get("litellm_provider") == "ai21":
            if key not in litellm.ai21_models:
                litellm.ai21_models.append(key)
        elif value.get("litellm_provider") == "nlp_cloud":
            if key not in litellm.nlp_cloud_models:
                litellm.nlp_cloud_models.append(key)
        elif value.get("litellm_provider") == "aleph_alpha":
            if key not in litellm.aleph_alpha_models:
                litellm.aleph_alpha_models.append(key)
        elif value.get("litellm_provider") == "bedrock":
            if key not in litellm.bedrock_models:
                litellm.bedrock_models.append(key)
    return model_cost


def _should_drop_param(k, additional_drop_params) -> bool:
    if (
        additional_drop_params is not None
        and isinstance(additional_drop_params, list)
        and k in additional_drop_params
    ):
        return True  # allow user to drop specific params for a model - e.g. vllm - logit bias

    return False


def _get_non_default_params(
    passed_params: dict, default_params: dict, additional_drop_params: Optional[bool]
) -> dict:
    non_default_params = {}
    for k, v in passed_params.items():
        if (
            k in default_params
            and v != default_params[k]
            and _should_drop_param(k=k, additional_drop_params=additional_drop_params)
            is False
        ):
            non_default_params[k] = v

    return non_default_params


def get_optional_params_transcription(
    model: str,
    language: Optional[str] = None,
    prompt: Optional[str] = None,
    response_format: Optional[str] = None,
    temperature: Optional[int] = None,
    timestamp_granularities: Optional[List[Literal["word", "segment"]]] = None,
    custom_llm_provider: Optional[str] = None,
    drop_params: Optional[bool] = None,
    **kwargs,
):
    # retrieve all parameters passed to the function
    passed_params = locals()
    custom_llm_provider = passed_params.pop("custom_llm_provider")
    drop_params = passed_params.pop("drop_params")
    special_params = passed_params.pop("kwargs")
    for k, v in special_params.items():
        passed_params[k] = v

    default_params = {
        "language": None,
        "prompt": None,
        "response_format": None,
        "temperature": None,  # openai defaults this to 0
    }

    non_default_params = {
        k: v
        for k, v in passed_params.items()
        if (k in default_params and v != default_params[k])
    }
    optional_params = {}

    ## raise exception if non-default value passed for non-openai/azure embedding calls
    def _check_valid_arg(supported_params):
        if len(non_default_params.keys()) > 0:
            keys = list(non_default_params.keys())
            for k in keys:
                if (
                    drop_params is True or litellm.drop_params is True
                ) and k not in supported_params:  # drop the unsupported non-default values
                    non_default_params.pop(k, None)
                elif k not in supported_params:
                    raise UnsupportedParamsError(
                        status_code=500,
                        message=f"Setting user/encoding format is not supported by {custom_llm_provider}. To drop it from the call, set `litellm.drop_params = True`.",
                    )
            return non_default_params

    provider_config: Optional[BaseAudioTranscriptionConfig] = None
    if custom_llm_provider is not None:
        provider_config = ProviderConfigManager.get_provider_audio_transcription_config(
            model=model,
            provider=LlmProviders(custom_llm_provider),
        )

    if custom_llm_provider == "openai" or custom_llm_provider == "azure":
        optional_params = non_default_params
    elif custom_llm_provider == "groq":
        supported_params = litellm.GroqSTTConfig().get_supported_openai_params_stt()
        _check_valid_arg(supported_params=supported_params)
        optional_params = litellm.GroqSTTConfig().map_openai_params_stt(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=drop_params if drop_params is not None else False,
        )
    elif provider_config is not None:  # handles fireworks ai, and any future providers
        supported_params = provider_config.get_supported_openai_params(model=model)
        _check_valid_arg(supported_params=supported_params)
        optional_params = provider_config.map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=drop_params if drop_params is not None else False,
        )
    for k in passed_params.keys():  # pass additional kwargs without modification
        if k not in default_params.keys():
            optional_params[k] = passed_params[k]
    return optional_params


def get_optional_params_image_gen(
    model: Optional[str] = None,
    n: Optional[int] = None,
    quality: Optional[str] = None,
    response_format: Optional[str] = None,
    size: Optional[str] = None,
    style: Optional[str] = None,
    user: Optional[str] = None,
    custom_llm_provider: Optional[str] = None,
    additional_drop_params: Optional[bool] = None,
    **kwargs,
):
    # retrieve all parameters passed to the function
    passed_params = locals()
    model = passed_params.pop("model", None)
    custom_llm_provider = passed_params.pop("custom_llm_provider")
    additional_drop_params = passed_params.pop("additional_drop_params", None)
    special_params = passed_params.pop("kwargs")
    for k, v in special_params.items():
        if k.startswith("aws_") and (
            custom_llm_provider != "bedrock" and custom_llm_provider != "sagemaker"
        ):  # allow dynamically setting boto3 init logic
            continue
        elif k == "hf_model_name" and custom_llm_provider != "sagemaker":
            continue
        elif (
            k.startswith("vertex_")
            and custom_llm_provider != "vertex_ai"
            and custom_llm_provider != "vertex_ai_beta"
        ):  # allow dynamically setting vertex ai init logic
            continue
        passed_params[k] = v

    default_params = {
        "n": None,
        "quality": None,
        "response_format": None,
        "size": None,
        "style": None,
        "user": None,
    }

    non_default_params = _get_non_default_params(
        passed_params=passed_params,
        default_params=default_params,
        additional_drop_params=additional_drop_params,
    )
    optional_params = {}

    ## raise exception if non-default value passed for non-openai/azure embedding calls
    def _check_valid_arg(supported_params):
        if len(non_default_params.keys()) > 0:
            keys = list(non_default_params.keys())
            for k in keys:
                if (
                    litellm.drop_params is True and k not in supported_params
                ):  # drop the unsupported non-default values
                    non_default_params.pop(k, None)
                elif k not in supported_params:
                    raise UnsupportedParamsError(
                        status_code=500,
                        message=f"Setting `{k}` is not supported by {custom_llm_provider}. To drop it from the call, set `litellm.drop_params = True`.",
                    )
            return non_default_params

    if (
        custom_llm_provider == "openai"
        or custom_llm_provider == "azure"
        or custom_llm_provider in litellm.openai_compatible_providers
    ):
        optional_params = non_default_params
    elif custom_llm_provider == "bedrock":
        # use stability3 config class if model is a stability3 model
        config_class = (
            litellm.AmazonStability3Config
            if litellm.AmazonStability3Config._is_stability_3_model(model=model)
            else litellm.AmazonStabilityConfig
        )
        supported_params = config_class.get_supported_openai_params(model=model)
        _check_valid_arg(supported_params=supported_params)
        optional_params = config_class.map_openai_params(
            non_default_params=non_default_params, optional_params={}
        )
    elif custom_llm_provider == "vertex_ai":
        supported_params = ["n"]
        """
        All params here: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/imagegeneration?project=adroit-crow-413218
        """
        _check_valid_arg(supported_params=supported_params)
        if n is not None:
            optional_params["sampleCount"] = int(n)

    for k in passed_params.keys():
        if k not in default_params.keys():
            optional_params[k] = passed_params[k]
    return optional_params


def get_optional_params_embeddings(  # noqa: PLR0915
    # 2 optional params
    model: str,
    user: Optional[str] = None,
    encoding_format: Optional[str] = None,
    dimensions: Optional[int] = None,
    custom_llm_provider="",
    drop_params: Optional[bool] = None,
    additional_drop_params: Optional[bool] = None,
    **kwargs,
):
    # retrieve all parameters passed to the function
    passed_params = locals()
    custom_llm_provider = passed_params.pop("custom_llm_provider", None)
    special_params = passed_params.pop("kwargs")
    for k, v in special_params.items():
        passed_params[k] = v

    drop_params = passed_params.pop("drop_params", None)
    additional_drop_params = passed_params.pop("additional_drop_params", None)

    default_params = {"user": None, "encoding_format": None, "dimensions": None}

    def _check_valid_arg(supported_params: Optional[list]):
        if supported_params is None:
            return
        unsupported_params = {}
        for k in non_default_params.keys():
            if k not in supported_params:
                unsupported_params[k] = non_default_params[k]
        if unsupported_params:
            if litellm.drop_params is True or (
                drop_params is not None and drop_params is True
            ):
                pass
            else:
                raise UnsupportedParamsError(
                    status_code=500,
                    message=f"{custom_llm_provider} does not support parameters: {unsupported_params}, for model={model}. To drop these, set `litellm.drop_params=True` or for proxy:\n\n`litellm_settings:\n drop_params: true`\n",
                )

    non_default_params = _get_non_default_params(
        passed_params=passed_params,
        default_params=default_params,
        additional_drop_params=additional_drop_params,
    )
    ## raise exception if non-default value passed for non-openai/azure embedding calls
    if custom_llm_provider == "openai":
        # 'dimensions` is only supported in `text-embedding-3` and later models

        if (
            model is not None
            and "text-embedding-3" not in model
            and "dimensions" in non_default_params.keys()
        ):
            raise UnsupportedParamsError(
                status_code=500,
                message="Setting dimensions is not supported for OpenAI `text-embedding-3` and later models. To drop it from the call, set `litellm.drop_params = True`.",
            )
    elif custom_llm_provider == "triton":
        supported_params = get_supported_openai_params(
            model=model,
            custom_llm_provider=custom_llm_provider,
            request_type="embeddings",
        )
        _check_valid_arg(supported_params=supported_params)
        optional_params = litellm.TritonEmbeddingConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params={},
            model=model,
            drop_params=drop_params if drop_params is not None else False,
        )
        final_params = {**optional_params, **kwargs}
        return final_params
    elif custom_llm_provider == "databricks":
        supported_params = get_supported_openai_params(
            model=model or "",
            custom_llm_provider="databricks",
            request_type="embeddings",
        )
        _check_valid_arg(supported_params=supported_params)
        optional_params = litellm.DatabricksEmbeddingConfig().map_openai_params(
            non_default_params=non_default_params, optional_params={}
        )
        final_params = {**optional_params, **kwargs}
        return final_params
    elif custom_llm_provider == "nvidia_nim":
        supported_params = get_supported_openai_params(
            model=model or "",
            custom_llm_provider="nvidia_nim",
            request_type="embeddings",
        )
        _check_valid_arg(supported_params=supported_params)
        optional_params = litellm.nvidiaNimEmbeddingConfig.map_openai_params(
            non_default_params=non_default_params, optional_params={}, kwargs=kwargs
        )
        return optional_params
    elif custom_llm_provider == "vertex_ai":
        supported_params = get_supported_openai_params(
            model=model,
            custom_llm_provider="vertex_ai",
            request_type="embeddings",
        )
        _check_valid_arg(supported_params=supported_params)
        (
            optional_params,
            kwargs,
        ) = litellm.VertexAITextEmbeddingConfig().map_openai_params(
            non_default_params=non_default_params, optional_params={}, kwargs=kwargs
        )
        final_params = {**optional_params, **kwargs}
        return final_params
    elif custom_llm_provider == "lm_studio":
        supported_params = (
            litellm.LmStudioEmbeddingConfig().get_supported_openai_params()
        )
        _check_valid_arg(supported_params=supported_params)
        optional_params = litellm.LmStudioEmbeddingConfig().map_openai_params(
            non_default_params=non_default_params, optional_params={}
        )
        final_params = {**optional_params, **kwargs}
        return final_params
    elif custom_llm_provider == "bedrock":
        # if dimensions is in non_default_params -> pass it for model=bedrock/amazon.titan-embed-text-v2
        if "amazon.titan-embed-text-v1" in model:
            object: Any = litellm.AmazonTitanG1Config()
        elif "amazon.titan-embed-image-v1" in model:
            object = litellm.AmazonTitanMultimodalEmbeddingG1Config()
        elif "amazon.titan-embed-text-v2:0" in model:
            object = litellm.AmazonTitanV2Config()
        elif "cohere.embed-multilingual-v3" in model:
            object = litellm.BedrockCohereEmbeddingConfig()
        else:  # unmapped model
            supported_params = []
            _check_valid_arg(supported_params=supported_params)
            final_params = {**kwargs}
            return final_params

        supported_params = object.get_supported_openai_params()
        _check_valid_arg(supported_params=supported_params)
        optional_params = object.map_openai_params(
            non_default_params=non_default_params, optional_params={}
        )
        final_params = {**optional_params, **kwargs}
        return final_params
    elif custom_llm_provider == "mistral":
        supported_params = get_supported_openai_params(
            model=model,
            custom_llm_provider="mistral",
            request_type="embeddings",
        )
        _check_valid_arg(supported_params=supported_params)
        optional_params = litellm.MistralEmbeddingConfig().map_openai_params(
            non_default_params=non_default_params, optional_params={}
        )
        final_params = {**optional_params, **kwargs}
        return final_params
    elif custom_llm_provider == "jina_ai":
        supported_params = get_supported_openai_params(
            model=model,
            custom_llm_provider="jina_ai",
            request_type="embeddings",
        )
        _check_valid_arg(supported_params=supported_params)
        optional_params = litellm.JinaAIEmbeddingConfig().map_openai_params(
            non_default_params=non_default_params, optional_params={}
        )
        final_params = {**optional_params, **kwargs}
        return final_params
    elif custom_llm_provider == "voyage":
        supported_params = get_supported_openai_params(
            model=model,
            custom_llm_provider="voyage",
            request_type="embeddings",
        )
        _check_valid_arg(supported_params=supported_params)
        optional_params = litellm.VoyageEmbeddingConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params={},
            model=model,
            drop_params=drop_params if drop_params is not None else False,
        )
        final_params = {**optional_params, **kwargs}
        return final_params
    elif custom_llm_provider == "fireworks_ai":
        supported_params = get_supported_openai_params(
            model=model,
            custom_llm_provider="fireworks_ai",
            request_type="embeddings",
        )
        _check_valid_arg(supported_params=supported_params)
        optional_params = litellm.FireworksAIEmbeddingConfig().map_openai_params(
            non_default_params=non_default_params, optional_params={}, model=model
        )
        final_params = {**optional_params, **kwargs}
        return final_params

    elif (
        custom_llm_provider != "openai"
        and custom_llm_provider != "azure"
        and custom_llm_provider not in litellm.openai_compatible_providers
    ):
        if len(non_default_params.keys()) > 0:
            if (
                litellm.drop_params is True or drop_params is True
            ):  # drop the unsupported non-default values
                keys = list(non_default_params.keys())
                for k in keys:
                    non_default_params.pop(k, None)
            else:
                raise UnsupportedParamsError(
                    status_code=500,
                    message=f"Setting {non_default_params} is not supported by {custom_llm_provider}. To drop it from the call, set `litellm.drop_params = True`.",
                )
    final_params = {**non_default_params, **kwargs}
    return final_params


def _remove_additional_properties(schema):
    """
    clean out 'additionalProperties = False'. Causes vertexai/gemini OpenAI API Schema errors - https://github.com/langchain-ai/langchainjs/issues/5240

    Relevant Issues: https://github.com/BerriAI/litellm/issues/6136, https://github.com/BerriAI/litellm/issues/6088
    """
    if isinstance(schema, dict):
        # Remove the 'additionalProperties' key if it exists and is set to False
        if "additionalProperties" in schema and schema["additionalProperties"] is False:
            del schema["additionalProperties"]

        # Recursively process all dictionary values
        for key, value in schema.items():
            _remove_additional_properties(value)

    elif isinstance(schema, list):
        # Recursively process all items in the list
        for item in schema:
            _remove_additional_properties(item)

    return schema


def _remove_strict_from_schema(schema):
    """
    Relevant Issues: https://github.com/BerriAI/litellm/issues/6136, https://github.com/BerriAI/litellm/issues/6088
    """
    if isinstance(schema, dict):
        # Remove the 'additionalProperties' key if it exists and is set to False
        if "strict" in schema:
            del schema["strict"]

        # Recursively process all dictionary values
        for key, value in schema.items():
            _remove_strict_from_schema(value)

    elif isinstance(schema, list):
        # Recursively process all items in the list
        for item in schema:
            _remove_strict_from_schema(item)

    return schema


def _remove_unsupported_params(
    non_default_params: dict, supported_openai_params: Optional[List[str]]
) -> dict:
    """
    Remove unsupported params from non_default_params
    """
    remove_keys = []
    if supported_openai_params is None:
        return {}  # no supported params, so no optional openai params to send
    for param in non_default_params.keys():
        if param not in supported_openai_params:
            remove_keys.append(param)
    for key in remove_keys:
        non_default_params.pop(key, None)
    return non_default_params


def get_optional_params(  # noqa: PLR0915
    # use the openai defaults
    # https://platform.openai.com/docs/api-reference/chat/create
    model: str,
    functions=None,
    function_call=None,
    temperature=None,
    top_p=None,
    n=None,
    stream=False,
    stream_options=None,
    stop=None,
    max_tokens=None,
    max_completion_tokens=None,
    modalities=None,
    prediction=None,
    audio=None,
    presence_penalty=None,
    frequency_penalty=None,
    logit_bias=None,
    user=None,
    custom_llm_provider="",
    response_format=None,
    seed=None,
    tools=None,
    tool_choice=None,
    max_retries=None,
    logprobs=None,
    top_logprobs=None,
    extra_headers=None,
    api_version=None,
    parallel_tool_calls=None,
    drop_params=None,
    reasoning_effort=None,
    additional_drop_params=None,
    messages: Optional[List[AllMessageValues]] = None,
    **kwargs,
):
    # retrieve all parameters passed to the function
    passed_params = locals().copy()
    special_params = passed_params.pop("kwargs")
    for k, v in special_params.items():
        if k.startswith("aws_") and (
            custom_llm_provider != "bedrock" and custom_llm_provider != "sagemaker"
        ):  # allow dynamically setting boto3 init logic
            continue
        elif k == "hf_model_name" and custom_llm_provider != "sagemaker":
            continue
        elif (
            k.startswith("vertex_")
            and custom_llm_provider != "vertex_ai"
            and custom_llm_provider != "vertex_ai_beta"
        ):  # allow dynamically setting vertex ai init logic
            continue
        passed_params[k] = v

    optional_params: Dict = {}

    common_auth_dict = litellm.common_cloud_provider_auth_params
    if custom_llm_provider in common_auth_dict["providers"]:
        """
        Check if params = ["project", "region_name", "token"]
        and correctly translate for = ["azure", "vertex_ai", "watsonx", "aws"]
        """
        if custom_llm_provider == "azure":
            optional_params = litellm.AzureOpenAIConfig().map_special_auth_params(
                non_default_params=passed_params, optional_params=optional_params
            )
        elif custom_llm_provider == "bedrock":
            optional_params = (
                litellm.AmazonBedrockGlobalConfig().map_special_auth_params(
                    non_default_params=passed_params, optional_params=optional_params
                )
            )
        elif (
            custom_llm_provider == "vertex_ai"
            or custom_llm_provider == "vertex_ai_beta"
        ):
            optional_params = litellm.VertexAIConfig().map_special_auth_params(
                non_default_params=passed_params, optional_params=optional_params
            )
        elif custom_llm_provider == "watsonx":
            optional_params = litellm.IBMWatsonXAIConfig().map_special_auth_params(
                non_default_params=passed_params, optional_params=optional_params
            )

    default_params = {
        "functions": None,
        "function_call": None,
        "temperature": None,
        "top_p": None,
        "n": None,
        "stream": None,
        "stream_options": None,
        "stop": None,
        "max_tokens": None,
        "max_completion_tokens": None,
        "modalities": None,
        "prediction": None,
        "audio": None,
        "presence_penalty": None,
        "frequency_penalty": None,
        "logit_bias": None,
        "user": None,
        "model": None,
        "custom_llm_provider": "",
        "response_format": None,
        "seed": None,
        "tools": None,
        "tool_choice": None,
        "max_retries": None,
        "logprobs": None,
        "top_logprobs": None,
        "extra_headers": None,
        "api_version": None,
        "parallel_tool_calls": None,
        "drop_params": None,
        "additional_drop_params": None,
        "messages": None,
        "reasoning_effort": None,
    }

    # filter out those parameters that were passed with non-default values
    non_default_params = {
        k: v
        for k, v in passed_params.items()
        if (
            k != "model"
            and k != "custom_llm_provider"
            and k != "api_version"
            and k != "drop_params"
            and k != "additional_drop_params"
            and k != "messages"
            and k in default_params
            and v != default_params[k]
            and _should_drop_param(k=k, additional_drop_params=additional_drop_params)
            is False
        )
    }

    ## raise exception if function calling passed in for a provider that doesn't support it
    if (
        "functions" in non_default_params
        or "function_call" in non_default_params
        or "tools" in non_default_params
    ):
        if (
            custom_llm_provider == "ollama"
            and custom_llm_provider != "text-completion-openai"
            and custom_llm_provider != "azure"
            and custom_llm_provider != "vertex_ai"
            and custom_llm_provider != "anyscale"
            and custom_llm_provider != "together_ai"
            and custom_llm_provider != "groq"
            and custom_llm_provider != "nvidia_nim"
            and custom_llm_provider != "cerebras"
            and custom_llm_provider != "xai"
            and custom_llm_provider != "ai21_chat"
            and custom_llm_provider != "volcengine"
            and custom_llm_provider != "deepseek"
            and custom_llm_provider != "codestral"
            and custom_llm_provider != "mistral"
            and custom_llm_provider != "anthropic"
            and custom_llm_provider != "cohere_chat"
            and custom_llm_provider != "cohere"
            and custom_llm_provider != "bedrock"
            and custom_llm_provider != "ollama_chat"
            and custom_llm_provider != "openrouter"
            and custom_llm_provider not in litellm.openai_compatible_providers
        ):
            if custom_llm_provider == "ollama":
                # ollama actually supports json output
                optional_params["format"] = "json"
                litellm.add_function_to_prompt = (
                    True  # so that main.py adds the function call to the prompt
                )
                if "tools" in non_default_params:
                    optional_params["functions_unsupported_model"] = (
                        non_default_params.pop("tools")
                    )
                    non_default_params.pop(
                        "tool_choice", None
                    )  # causes ollama requests to hang
                elif "functions" in non_default_params:
                    optional_params["functions_unsupported_model"] = (
                        non_default_params.pop("functions")
                    )
            elif (
                litellm.add_function_to_prompt
            ):  # if user opts to add it to prompt instead
                optional_params["functions_unsupported_model"] = non_default_params.pop(
                    "tools", non_default_params.pop("functions", None)
                )
            else:
                raise UnsupportedParamsError(
                    status_code=500,
                    message=f"Function calling is not supported by {custom_llm_provider}.",
                )

    provider_config: Optional[BaseConfig] = None
    if custom_llm_provider is not None and custom_llm_provider in [
        provider.value for provider in LlmProviders
    ]:
        provider_config = ProviderConfigManager.get_provider_chat_config(
            model=model, provider=LlmProviders(custom_llm_provider)
        )

    if "response_format" in non_default_params:
        if provider_config is not None:
            non_default_params["response_format"] = (
                provider_config.get_json_schema_from_pydantic_object(
                    response_format=non_default_params["response_format"]
                )
            )
        else:
            non_default_params["response_format"] = type_to_response_format_param(
                response_format=non_default_params["response_format"]
            )

    if "tools" in non_default_params and isinstance(
        non_default_params, list
    ):  # fixes https://github.com/BerriAI/litellm/issues/4933
        tools = non_default_params["tools"]
        for (
            tool
        ) in (
            tools
        ):  # clean out 'additionalProperties = False'. Causes vertexai/gemini OpenAI API Schema errors - https://github.com/langchain-ai/langchainjs/issues/5240
            tool_function = tool.get("function", {})
            parameters = tool_function.get("parameters", None)
            if parameters is not None:
                new_parameters = copy.deepcopy(parameters)
                if (
                    "additionalProperties" in new_parameters
                    and new_parameters["additionalProperties"] is False
                ):
                    new_parameters.pop("additionalProperties", None)
                tool_function["parameters"] = new_parameters

    def _check_valid_arg(supported_params: List[str]):
        verbose_logger.info(
            f"\nLiteLLM completion() model= {model}; provider = {custom_llm_provider}"
        )
        verbose_logger.debug(
            f"\nLiteLLM: Params passed to completion() {passed_params}"
        )
        verbose_logger.debug(
            f"\nLiteLLM: Non-Default params passed to completion() {non_default_params}"
        )
        unsupported_params = {}
        for k in non_default_params.keys():
            if k not in supported_params:
                if k == "user" or k == "stream_options" or k == "stream":
                    continue
                if k == "n" and n == 1:  # langchain sends n=1 as a default value
                    continue  # skip this param
                if (
                    k == "max_retries"
                ):  # TODO: This is a patch. We support max retries for OpenAI, Azure. For non OpenAI LLMs we need to add support for max retries
                    continue  # skip this param
                # Always keeps this in elif code blocks
                else:
                    unsupported_params[k] = non_default_params[k]

        if unsupported_params:
            if litellm.drop_params is True or (
                drop_params is not None and drop_params is True
            ):
                for k in unsupported_params.keys():
                    non_default_params.pop(k, None)
            else:
                raise UnsupportedParamsError(
                    status_code=500,
                    message=f"{custom_llm_provider} does not support parameters: {unsupported_params}, for model={model}. To drop these, set `litellm.drop_params=True` or for proxy:\n\n`litellm_settings:\n drop_params: true`\n",
                )

    supported_params = get_supported_openai_params(
        model=model, custom_llm_provider=custom_llm_provider
    )
    if supported_params is None:
        supported_params = get_supported_openai_params(
            model=model, custom_llm_provider="openai"
        )
    _check_valid_arg(supported_params=supported_params or [])
    ## raise exception if provider doesn't support passed in param
    if custom_llm_provider == "anthropic":
        ## check if unsupported param passed in
        optional_params = litellm.AnthropicConfig().map_openai_params(
            model=model,
            non_default_params=non_default_params,
            optional_params=optional_params,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "anthropic_text":
        optional_params = litellm.AnthropicTextConfig().map_openai_params(
            model=model,
            non_default_params=non_default_params,
            optional_params=optional_params,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
        optional_params = litellm.AnthropicTextConfig().map_openai_params(
            model=model,
            non_default_params=non_default_params,
            optional_params=optional_params,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )

    elif custom_llm_provider == "cohere":
        ## check if unsupported param passed in
        # handle cohere params
        optional_params = litellm.CohereConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "cohere_chat":
        # handle cohere params
        optional_params = litellm.CohereChatConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "triton":
        optional_params = litellm.TritonConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=drop_params if drop_params is not None else False,
        )

    elif custom_llm_provider == "maritalk":
        optional_params = litellm.MaritalkConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "replicate":

        optional_params = litellm.ReplicateConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "predibase":
        optional_params = litellm.PredibaseConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "huggingface":
        optional_params = litellm.HuggingfaceConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "together_ai":

        optional_params = litellm.TogetherAIConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "vertex_ai" and (
        model in litellm.vertex_chat_models
        or model in litellm.vertex_code_chat_models
        or model in litellm.vertex_text_models
        or model in litellm.vertex_code_text_models
        or model in litellm.vertex_language_models
        or model in litellm.vertex_vision_models
    ):
        optional_params = litellm.VertexGeminiConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )

    elif custom_llm_provider == "gemini":
        optional_params = litellm.GoogleAIStudioGeminiConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "vertex_ai_beta" or (
        custom_llm_provider == "vertex_ai" and "gemini" in model
    ):
        optional_params = litellm.VertexGeminiConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif litellm.VertexAIAnthropicConfig.is_supported_model(
        model=model, custom_llm_provider=custom_llm_provider
    ):
        optional_params = litellm.VertexAIAnthropicConfig().map_openai_params(
            model=model,
            non_default_params=non_default_params,
            optional_params=optional_params,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "vertex_ai" and model in litellm.vertex_llama3_models:
        optional_params = litellm.VertexAILlama3Config().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "vertex_ai" and model in litellm.vertex_mistral_models:
        if "codestral" in model:
            optional_params = litellm.CodestralTextCompletionConfig().map_openai_params(
                model=model,
                non_default_params=non_default_params,
                optional_params=optional_params,
                drop_params=(
                    drop_params
                    if drop_params is not None and isinstance(drop_params, bool)
                    else False
                ),
            )
        else:
            optional_params = litellm.MistralConfig().map_openai_params(
                model=model,
                non_default_params=non_default_params,
                optional_params=optional_params,
                drop_params=(
                    drop_params
                    if drop_params is not None and isinstance(drop_params, bool)
                    else False
                ),
            )
    elif custom_llm_provider == "vertex_ai" and model in litellm.vertex_ai_ai21_models:
        optional_params = litellm.VertexAIAi21Config().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "sagemaker":
        # temperature, top_p, n, stream, stop, max_tokens, n, presence_penalty default to None
        optional_params = litellm.SagemakerConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "bedrock":
        base_model = litellm.AmazonConverseConfig()._get_base_model(model)
        if base_model in litellm.bedrock_converse_models:
            optional_params = litellm.AmazonConverseConfig().map_openai_params(
                model=model,
                non_default_params=non_default_params,
                optional_params=optional_params,
                drop_params=(
                    drop_params
                    if drop_params is not None and isinstance(drop_params, bool)
                    else False
                ),
                messages=messages,
            )

        elif "anthropic" in model:
            if "aws_bedrock_client" in passed_params:  # deprecated boto3.invoke route.
                if model.startswith("anthropic.claude-3"):
                    optional_params = (
                        litellm.AmazonAnthropicClaude3Config().map_openai_params(
                            non_default_params=non_default_params,
                            optional_params=optional_params,
                        )
                    )
            else:
                optional_params = litellm.AmazonAnthropicConfig().map_openai_params(
                    non_default_params=non_default_params,
                    optional_params=optional_params,
                )
        elif provider_config is not None:
            optional_params = provider_config.map_openai_params(
                non_default_params=non_default_params,
                optional_params=optional_params,
                model=model,
                drop_params=(
                    drop_params
                    if drop_params is not None and isinstance(drop_params, bool)
                    else False
                ),
            )
    elif custom_llm_provider == "cloudflare":

        optional_params = litellm.CloudflareChatConfig().map_openai_params(
            model=model,
            non_default_params=non_default_params,
            optional_params=optional_params,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "ollama":

        optional_params = litellm.OllamaConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "ollama_chat":

        optional_params = litellm.OllamaChatConfig().map_openai_params(
            model=model,
            non_default_params=non_default_params,
            optional_params=optional_params,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "nlp_cloud":
        optional_params = litellm.NLPCloudConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )

    elif custom_llm_provider == "petals":
        optional_params = litellm.PetalsConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "deepinfra":
        optional_params = litellm.DeepInfraConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "perplexity" and provider_config is not None:
        optional_params = provider_config.map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "mistral" or custom_llm_provider == "codestral":
        optional_params = litellm.MistralConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "text-completion-codestral":
        optional_params = litellm.CodestralTextCompletionConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )

    elif custom_llm_provider == "databricks":
        optional_params = litellm.DatabricksConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "nvidia_nim":
        optional_params = litellm.NvidiaNimConfig().map_openai_params(
            model=model,
            non_default_params=non_default_params,
            optional_params=optional_params,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "cerebras":
        optional_params = litellm.CerebrasConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "xai":
        optional_params = litellm.XAIChatConfig().map_openai_params(
            model=model,
            non_default_params=non_default_params,
            optional_params=optional_params,
        )
    elif custom_llm_provider == "ai21_chat" or custom_llm_provider == "ai21":
        optional_params = litellm.AI21ChatConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "fireworks_ai":
        optional_params = litellm.FireworksAIConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "volcengine":
        optional_params = litellm.VolcEngineConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "hosted_vllm":
        optional_params = litellm.HostedVLLMChatConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "vllm":
        optional_params = litellm.VLLMConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "groq":
        optional_params = litellm.GroqChatConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "deepseek":
        optional_params = litellm.OpenAIConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "openrouter":
        optional_params = litellm.OpenrouterConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )

    elif custom_llm_provider == "watsonx":
        optional_params = litellm.IBMWatsonXChatConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
        # WatsonX-text param check
        for param in passed_params.keys():
            if litellm.IBMWatsonXAIConfig().is_watsonx_text_param(param):
                raise ValueError(
                    f"LiteLLM now defaults to Watsonx's `/text/chat` endpoint. Please use the `watsonx_text` provider instead, to call the `/text/generation` endpoint. Param: {param}"
                )
    elif custom_llm_provider == "watsonx_text":
        optional_params = litellm.IBMWatsonXAIConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "openai":
        optional_params = litellm.OpenAIConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    elif custom_llm_provider == "azure":
        if litellm.AzureOpenAIO1Config().is_o_series_model(model=model):
            optional_params = litellm.AzureOpenAIO1Config().map_openai_params(
                non_default_params=non_default_params,
                optional_params=optional_params,
                model=model,
                drop_params=(
                    drop_params
                    if drop_params is not None and isinstance(drop_params, bool)
                    else False
                ),
            )
        else:
            verbose_logger.debug(
                "Azure optional params - api_version: api_version={}, litellm.api_version={}, os.environ['AZURE_API_VERSION']={}".format(
                    api_version, litellm.api_version, get_secret("AZURE_API_VERSION")
                )
            )
            api_version = (
                api_version
                or litellm.api_version
                or get_secret("AZURE_API_VERSION")
                or litellm.AZURE_DEFAULT_API_VERSION
            )
            optional_params = litellm.AzureOpenAIConfig().map_openai_params(
                non_default_params=non_default_params,
                optional_params=optional_params,
                model=model,
                api_version=api_version,  # type: ignore
                drop_params=(
                    drop_params
                    if drop_params is not None and isinstance(drop_params, bool)
                    else False
                ),
            )
    else:  # assume passing in params for openai-like api
        optional_params = litellm.OpenAILikeChatConfig().map_openai_params(
            non_default_params=non_default_params,
            optional_params=optional_params,
            model=model,
            drop_params=(
                drop_params
                if drop_params is not None and isinstance(drop_params, bool)
                else False
            ),
        )
    if (
        custom_llm_provider
        in ["openai", "azure", "text-completion-openai"]
        + litellm.openai_compatible_providers
    ):
        # for openai, azure we should pass the extra/passed params within `extra_body` https://github.com/openai/openai-python/blob/ac33853ba10d13ac149b1fa3ca6dba7d613065c9/src/openai/resources/models.py#L46
        if (
            _should_drop_param(
                k="extra_body", additional_drop_params=additional_drop_params
            )
            is False
        ):
            extra_body = passed_params.pop("extra_body", {})
            for k in passed_params.keys():
                if k not in default_params.keys():
                    extra_body[k] = passed_params[k]
            optional_params.setdefault("extra_body", {})
            optional_params["extra_body"] = {
                **optional_params["extra_body"],
                **extra_body,
            }

            optional_params["extra_body"] = _ensure_extra_body_is_safe(
                extra_body=optional_params["extra_body"]
            )
    else:
        # if user passed in non-default kwargs for specific providers/models, pass them along
        for k in passed_params.keys():
            if k not in default_params.keys():
                optional_params[k] = passed_params[k]
    print_verbose(f"Final returned optional params: {optional_params}")
    return optional_params


def get_non_default_params(passed_params: dict) -> dict:
    default_params = {
        "functions": None,
        "function_call": None,
        "temperature": None,
        "top_p": None,
        "n": None,
        "stream": None,
        "stream_options": None,
        "stop": None,
        "max_tokens": None,
        "presence_penalty": None,
        "frequency_penalty": None,
        "logit_bias": None,
        "user": None,
        "model": None,
        "custom_llm_provider": "",
        "response_format": None,
        "seed": None,
        "tools": None,
        "tool_choice": None,
        "max_retries": None,
        "logprobs": None,
        "top_logprobs": None,
        "extra_headers": None,
    }
    # filter out those parameters that were passed with non-default values
    non_default_params = {
        k: v
        for k, v in passed_params.items()
        if (
            k != "model"
            and k != "custom_llm_provider"
            and k in default_params
            and v != default_params[k]
        )
    }

    return non_default_params


def calculate_max_parallel_requests(
    max_parallel_requests: Optional[int],
    rpm: Optional[int],
    tpm: Optional[int],
    default_max_parallel_requests: Optional[int],
) -> Optional[int]:
    """
    Returns the max parallel requests to send to a deployment.

    Used in semaphore for async requests on router.

    Parameters:
    - max_parallel_requests - Optional[int] - max_parallel_requests allowed for that deployment
    - rpm - Optional[int] - requests per minute allowed for that deployment
    - tpm - Optional[int] - tokens per minute allowed for that deployment
    - default_max_parallel_requests - Optional[int] - default_max_parallel_requests allowed for any deployment

    Returns:
    - int or None (if all params are None)

    Order:
    max_parallel_requests > rpm > tpm / 6 (azure formula) > default max_parallel_requests

    Azure RPM formula:
    6 rpm per 1000 TPM
    https://learn.microsoft.com/en-us/azure/ai-services/openai/quotas-limits


    """
    if max_parallel_requests is not None:
        return max_parallel_requests
    elif rpm is not None:
        return rpm
    elif tpm is not None:
        calculated_rpm = int(tpm / 1000 / 6)
        if calculated_rpm == 0:
            calculated_rpm = 1
        return calculated_rpm
    elif default_max_parallel_requests is not None:
        return default_max_parallel_requests
    return None


def _get_order_filtered_deployments(healthy_deployments: List[Dict]) -> List:
    min_order = min(
        (
            deployment["litellm_params"]["order"]
            for deployment in healthy_deployments
            if "order" in deployment["litellm_params"]
        ),
        default=None,
    )

    if min_order is not None:
        filtered_deployments = [
            deployment
            for deployment in healthy_deployments
            if deployment["litellm_params"].get("order") == min_order
        ]

        return filtered_deployments
    return healthy_deployments


def _get_model_region(
    custom_llm_provider: str, litellm_params: LiteLLM_Params
) -> Optional[str]:
    """
    Return the region for a model, for a given provider
    """
    if custom_llm_provider == "vertex_ai":
        # check 'vertex_location'
        vertex_ai_location = (
            litellm_params.vertex_location
            or litellm.vertex_location
            or get_secret("VERTEXAI_LOCATION")
            or get_secret("VERTEX_LOCATION")
        )
        if vertex_ai_location is not None and isinstance(vertex_ai_location, str):
            return vertex_ai_location
    elif custom_llm_provider == "bedrock":
        aws_region_name = litellm_params.aws_region_name
        if aws_region_name is not None:
            return aws_region_name
    elif custom_llm_provider == "watsonx":
        watsonx_region_name = litellm_params.watsonx_region_name
        if watsonx_region_name is not None:
            return watsonx_region_name
    return litellm_params.region_name


def _infer_model_region(litellm_params: LiteLLM_Params) -> Optional[AllowedModelRegion]:
    """
    Infer if a model is in the EU or US region

    Returns:
    - str (region) - "eu" or "us"
    - None (if region not found)
    """
    model, custom_llm_provider, _, _ = litellm.get_llm_provider(
        model=litellm_params.model, litellm_params=litellm_params
    )

    model_region = _get_model_region(
        custom_llm_provider=custom_llm_provider, litellm_params=litellm_params
    )

    if model_region is None:
        verbose_logger.debug(
            "Cannot infer model region for model: {}".format(litellm_params.model)
        )
        return None

    if custom_llm_provider == "azure":
        eu_regions = litellm.AzureOpenAIConfig().get_eu_regions()
        us_regions = litellm.AzureOpenAIConfig().get_us_regions()
    elif custom_llm_provider == "vertex_ai":
        eu_regions = litellm.VertexAIConfig().get_eu_regions()
        us_regions = litellm.VertexAIConfig().get_us_regions()
    elif custom_llm_provider == "bedrock":
        eu_regions = litellm.AmazonBedrockGlobalConfig().get_eu_regions()
        us_regions = litellm.AmazonBedrockGlobalConfig().get_us_regions()
    elif custom_llm_provider == "watsonx":
        eu_regions = litellm.IBMWatsonXAIConfig().get_eu_regions()
        us_regions = litellm.IBMWatsonXAIConfig().get_us_regions()
    else:
        eu_regions = []
        us_regions = []

    for region in eu_regions:
        if region in model_region.lower():
            return "eu"
    for region in us_regions:
        if region in model_region.lower():
            return "us"
    return None


def _is_region_eu(litellm_params: LiteLLM_Params) -> bool:
    """
    Return true/false if a deployment is in the EU
    """
    if litellm_params.region_name == "eu":
        return True

    ## Else - try and infer from model region
    model_region = _infer_model_region(litellm_params=litellm_params)
    if model_region is not None and model_region == "eu":
        return True
    return False


def _is_region_us(litellm_params: LiteLLM_Params) -> bool:
    """
    Return true/false if a deployment is in the US
    """
    if litellm_params.region_name == "us":
        return True

    ## Else - try and infer from model region
    model_region = _infer_model_region(litellm_params=litellm_params)
    if model_region is not None and model_region == "us":
        return True
    return False


def is_region_allowed(
    litellm_params: LiteLLM_Params, allowed_model_region: str
) -> bool:
    """
    Return true/false if a deployment is in the EU
    """
    if litellm_params.region_name == allowed_model_region:
        return True
    return False


def get_model_region(
    litellm_params: LiteLLM_Params, mode: Optional[str]
) -> Optional[str]:
    """
    Pass the litellm params for an azure model, and get back the region
    """
    if (
        "azure" in litellm_params.model
        and isinstance(litellm_params.api_key, str)
        and isinstance(litellm_params.api_base, str)
    ):
        _model = litellm_params.model.replace("azure/", "")
        response: dict = litellm.AzureChatCompletion().get_headers(
            model=_model,
            api_key=litellm_params.api_key,
            api_base=litellm_params.api_base,
            api_version=litellm_params.api_version or litellm.AZURE_DEFAULT_API_VERSION,
            timeout=10,
            mode=mode or "chat",
        )

        region: Optional[str] = response.get("x-ms-region", None)
        return region
    return None


def get_first_chars_messages(kwargs: dict) -> str:
    try:
        _messages = kwargs.get("messages")
        _messages = str(_messages)[:100]
        return _messages
    except Exception:
        return ""


def _count_characters(text: str) -> int:
    # Remove white spaces and count characters
    filtered_text = "".join(char for char in text if not char.isspace())
    return len(filtered_text)


def get_response_string(response_obj: ModelResponse) -> str:
    _choices: List[Union[Choices, StreamingChoices]] = response_obj.choices

    response_str = ""
    for choice in _choices:
        if isinstance(choice, Choices):
            if choice.message.content is not None:
                response_str += choice.message.content
        elif isinstance(choice, StreamingChoices):
            if choice.delta.content is not None:
                response_str += choice.delta.content

    return response_str


def get_api_key(llm_provider: str, dynamic_api_key: Optional[str]):
    api_key = dynamic_api_key or litellm.api_key
    # openai
    if llm_provider == "openai" or llm_provider == "text-completion-openai":
        api_key = api_key or litellm.openai_key or get_secret("OPENAI_API_KEY")
    # anthropic
    elif llm_provider == "anthropic" or llm_provider == "anthropic_text":
        api_key = api_key or litellm.anthropic_key or get_secret("ANTHROPIC_API_KEY")
    # ai21
    elif llm_provider == "ai21":
        api_key = api_key or litellm.ai21_key or get_secret("AI211_API_KEY")
    # aleph_alpha
    elif llm_provider == "aleph_alpha":
        api_key = (
            api_key or litellm.aleph_alpha_key or get_secret("ALEPH_ALPHA_API_KEY")
        )
    # baseten
    elif llm_provider == "baseten":
        api_key = api_key or litellm.baseten_key or get_secret("BASETEN_API_KEY")
    # cohere
    elif llm_provider == "cohere" or llm_provider == "cohere_chat":
        api_key = api_key or litellm.cohere_key or get_secret("COHERE_API_KEY")
    # huggingface
    elif llm_provider == "huggingface":
        api_key = (
            api_key or litellm.huggingface_key or get_secret("HUGGINGFACE_API_KEY")
        )
    # nlp_cloud
    elif llm_provider == "nlp_cloud":
        api_key = api_key or litellm.nlp_cloud_key or get_secret("NLP_CLOUD_API_KEY")
    # replicate
    elif llm_provider == "replicate":
        api_key = api_key or litellm.replicate_key or get_secret("REPLICATE_API_KEY")
    # together_ai
    elif llm_provider == "together_ai":
        api_key = (
            api_key
            or litellm.togetherai_api_key
            or get_secret("TOGETHERAI_API_KEY")
            or get_secret("TOGETHER_AI_TOKEN")
        )
    return api_key


def get_utc_datetime():
    import datetime as dt
    from datetime import datetime

    if hasattr(dt, "UTC"):
        return datetime.now(dt.UTC)  # type: ignore
    else:
        return datetime.utcnow()  # type: ignore


def get_max_tokens(model: str) -> Optional[int]:
    """
    Get the maximum number of output tokens allowed for a given model.

    Parameters:
    model (str): The name of the model.

    Returns:
        int: The maximum number of tokens allowed for the given model.

    Raises:
        Exception: If the model is not mapped yet.

    Example:
        >>> get_max_tokens("gpt-4")
        8192
    """

    def _get_max_position_embeddings(model_name):
        # Construct the URL for the config.json file
        config_url = f"https://huggingface.co/{model_name}/raw/main/config.json"
        try:
            # Make the HTTP request to get the raw JSON file
            response = litellm.module_level_client.get(config_url)
            response.raise_for_status()  # Raise an exception for bad responses (4xx or 5xx)

            # Parse the JSON response
            config_json = response.json()
            # Extract and return the max_position_embeddings
            max_position_embeddings = config_json.get("max_position_embeddings")
            if max_position_embeddings is not None:
                return max_position_embeddings
            else:
                return None
        except Exception:
            return None

    try:
        if model in litellm.model_cost:
            if "max_output_tokens" in litellm.model_cost[model]:
                return litellm.model_cost[model]["max_output_tokens"]
            elif "max_tokens" in litellm.model_cost[model]:
                return litellm.model_cost[model]["max_tokens"]
        model, custom_llm_provider, _, _ = get_llm_provider(model=model)
        if custom_llm_provider == "huggingface":
            max_tokens = _get_max_position_embeddings(model_name=model)
            return max_tokens
        if model in litellm.model_cost:  # check if extracted model is in model_list
            if "max_output_tokens" in litellm.model_cost[model]:
                return litellm.model_cost[model]["max_output_tokens"]
            elif "max_tokens" in litellm.model_cost[model]:
                return litellm.model_cost[model]["max_tokens"]
        else:
            raise Exception()
        return None
    except Exception:
        raise Exception(
            f"Model {model} isn't mapped yet. Add it here - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json"
        )


def _strip_stable_vertex_version(model_name) -> str:
    return re.sub(r"-\d+$", "", model_name)


def _strip_bedrock_region(model_name) -> str:
    return litellm.AmazonConverseConfig()._get_base_model(model_name)


def _strip_openai_finetune_model_name(model_name: str) -> str:
    """
    Strips the organization, custom suffix, and ID from an OpenAI fine-tuned model name.

    input: ft:gpt-3.5-turbo:my-org:custom_suffix:id
    output: ft:gpt-3.5-turbo

    Args:
    model_name (str): The full model name

    Returns:
    str: The stripped model name
    """
    return re.sub(r"(:[^:]+){3}$", "", model_name)


def _strip_model_name(model: str, custom_llm_provider: Optional[str]) -> str:
    if custom_llm_provider and custom_llm_provider == "bedrock":
        strip_bedrock_region = _strip_bedrock_region(model_name=model)
        return strip_bedrock_region
    elif custom_llm_provider and (
        custom_llm_provider == "vertex_ai" or custom_llm_provider == "gemini"
    ):
        strip_version = _strip_stable_vertex_version(model_name=model)
        return strip_version
    elif custom_llm_provider and (custom_llm_provider == "databricks"):
        strip_version = _strip_stable_vertex_version(model_name=model)
        return strip_version
    elif "ft:" in model:
        strip_finetune = _strip_openai_finetune_model_name(model_name=model)
        return strip_finetune
    else:
        return model


def _get_model_info_from_model_cost(key: str) -> dict:
    return litellm.model_cost[key]


def _check_provider_match(model_info: dict, custom_llm_provider: Optional[str]) -> bool:
    """
    Check if the model info provider matches the custom provider.
    """
    if custom_llm_provider and (
        "litellm_provider" in model_info
        and model_info["litellm_provider"] != custom_llm_provider
    ):
        if custom_llm_provider == "vertex_ai" and model_info[
            "litellm_provider"
        ].startswith("vertex_ai"):
            return True
        elif custom_llm_provider == "fireworks_ai" and model_info[
            "litellm_provider"
        ].startswith("fireworks_ai"):
            return True
        elif custom_llm_provider.startswith("bedrock") and model_info[
            "litellm_provider"
        ].startswith("bedrock"):
            return True
        else:
            return False

    return True


from typing import TypedDict


class PotentialModelNamesAndCustomLLMProvider(TypedDict):
    split_model: str
    combined_model_name: str
    stripped_model_name: str
    combined_stripped_model_name: str
    custom_llm_provider: str


def _get_potential_model_names(
    model: str, custom_llm_provider: Optional[str]
) -> PotentialModelNamesAndCustomLLMProvider:
    if custom_llm_provider is None:
        # Get custom_llm_provider
        try:
            split_model, custom_llm_provider, _, _ = get_llm_provider(model=model)
        except Exception:
            split_model = model
        combined_model_name = model
        stripped_model_name = _strip_model_name(
            model=model, custom_llm_provider=custom_llm_provider
        )
        combined_stripped_model_name = stripped_model_name
    elif custom_llm_provider and model.startswith(
        custom_llm_provider + "/"
    ):  # handle case where custom_llm_provider is provided and model starts with custom_llm_provider
        split_model = model.split("/", 1)[1]
        combined_model_name = model
        stripped_model_name = _strip_model_name(
            model=split_model, custom_llm_provider=custom_llm_provider
        )
        combined_stripped_model_name = "{}/{}".format(
            custom_llm_provider, stripped_model_name
        )
    else:
        split_model = model
        combined_model_name = "{}/{}".format(custom_llm_provider, model)
        stripped_model_name = _strip_model_name(
            model=model, custom_llm_provider=custom_llm_provider
        )
        combined_stripped_model_name = "{}/{}".format(
            custom_llm_provider,
            stripped_model_name,
        )

    return PotentialModelNamesAndCustomLLMProvider(
        split_model=split_model,
        combined_model_name=combined_model_name,
        stripped_model_name=stripped_model_name,
        combined_stripped_model_name=combined_stripped_model_name,
        custom_llm_provider=cast(str, custom_llm_provider),
    )


def _get_max_position_embeddings(model_name: str) -> Optional[int]:
    # Construct the URL for the config.json file
    config_url = f"https://huggingface.co/{model_name}/raw/main/config.json"

    try:
        # Make the HTTP request to get the raw JSON file
        response = litellm.module_level_client.get(config_url)
        response.raise_for_status()  # Raise an exception for bad responses (4xx or 5xx)

        # Parse the JSON response
        config_json = response.json()

        # Extract and return the max_position_embeddings
        max_position_embeddings = config_json.get("max_position_embeddings")

        if max_position_embeddings is not None:
            return max_position_embeddings
        else:
            return None
    except Exception:
        return None


@lru_cache_wrapper(maxsize=16)
def _cached_get_model_info_helper(
    model: str, custom_llm_provider: Optional[str]
) -> ModelInfoBase:
    """
    _get_model_info_helper wrapped with lru_cache

    Speed Optimization to hit high RPS
    """
    return _get_model_info_helper(model=model, custom_llm_provider=custom_llm_provider)


def get_provider_info(
    model: str, custom_llm_provider: Optional[str]
) -> Optional[ProviderSpecificModelInfo]:
    ## PROVIDER-SPECIFIC INFORMATION
    # if custom_llm_provider == "predibase":
    #     _model_info["supports_response_schema"] = True
    provider_config: Optional[BaseLLMModelInfo] = None
    if custom_llm_provider and custom_llm_provider in LlmProvidersSet:
        # Check if the provider string exists in LlmProviders enum
        provider_config = ProviderConfigManager.get_provider_model_info(
            model=model, provider=LlmProviders(custom_llm_provider)
        )

    model_info: Optional[ProviderSpecificModelInfo] = None
    if provider_config:
        model_info = provider_config.get_provider_info(model=model)

    return model_info


def _get_model_info_helper(  # noqa: PLR0915
    model: str, custom_llm_provider: Optional[str] = None
) -> ModelInfoBase:
    """
    Helper for 'get_model_info'. Separated out to avoid infinite loop caused by returning 'supported_openai_param's
    """
    try:
        azure_llms = {**litellm.azure_llms, **litellm.azure_embedding_models}
        if model in azure_llms:
            model = azure_llms[model]
        if custom_llm_provider is not None and custom_llm_provider == "vertex_ai_beta":
            custom_llm_provider = "vertex_ai"
        if custom_llm_provider is not None and custom_llm_provider == "vertex_ai":
            if "meta/" + model in litellm.vertex_llama3_models:
                model = "meta/" + model
            elif model + "@latest" in litellm.vertex_mistral_models:
                model = model + "@latest"
            elif model + "@latest" in litellm.vertex_ai_ai21_models:
                model = model + "@latest"
        ##########################
        potential_model_names = _get_potential_model_names(
            model=model, custom_llm_provider=custom_llm_provider
        )

        verbose_logger.debug(
            f"checking potential_model_names in litellm.model_cost: {potential_model_names}"
        )

        combined_model_name = potential_model_names["combined_model_name"]
        stripped_model_name = potential_model_names["stripped_model_name"]
        combined_stripped_model_name = potential_model_names[
            "combined_stripped_model_name"
        ]
        split_model = potential_model_names["split_model"]
        custom_llm_provider = potential_model_names["custom_llm_provider"]
        #########################
        if custom_llm_provider == "huggingface":
            max_tokens = _get_max_position_embeddings(model_name=model)
            return ModelInfoBase(
                key=model,
                max_tokens=max_tokens,  # type: ignore
                max_input_tokens=None,
                max_output_tokens=None,
                input_cost_per_token=0,
                output_cost_per_token=0,
                litellm_provider="huggingface",
                mode="chat",
                supports_system_messages=None,
                supports_response_schema=None,
                supports_function_calling=None,
                supports_tool_choice=None,
                supports_assistant_prefill=None,
                supports_prompt_caching=None,
                supports_pdf_input=None,
            )
        elif custom_llm_provider == "ollama" or custom_llm_provider == "ollama_chat":
            return litellm.OllamaConfig().get_model_info(model)
        else:
            """
            Check if: (in order of specificity)
            1. 'custom_llm_provider/model' in litellm.model_cost. Checks "groq/llama3-8b-8192" if model="llama3-8b-8192" and custom_llm_provider="groq"
            2. 'model' in litellm.model_cost. Checks "gemini-1.5-pro-002" in  litellm.model_cost if model="gemini-1.5-pro-002" and custom_llm_provider=None
            3. 'combined_stripped_model_name' in litellm.model_cost. Checks if 'gemini/gemini-1.5-flash' in model map, if 'gemini/gemini-1.5-flash-001' given.
            4. 'stripped_model_name' in litellm.model_cost. Checks if 'ft:gpt-3.5-turbo' in model map, if 'ft:gpt-3.5-turbo:my-org:custom_suffix:id' given.
            5. 'split_model' in litellm.model_cost. Checks "llama3-8b-8192" in litellm.model_cost if model="groq/llama3-8b-8192"
            """

            _model_info: Optional[Dict[str, Any]] = None
            key: Optional[str] = None

            if combined_model_name in litellm.model_cost:
                key = combined_model_name
                _model_info = _get_model_info_from_model_cost(key=key)
                if not _check_provider_match(
                    model_info=_model_info, custom_llm_provider=custom_llm_provider
                ):
                    _model_info = None
            if _model_info is None and model in litellm.model_cost:

                key = model
                _model_info = _get_model_info_from_model_cost(key=key)
                if not _check_provider_match(
                    model_info=_model_info, custom_llm_provider=custom_llm_provider
                ):
                    _model_info = None
            if (
                _model_info is None
                and combined_stripped_model_name in litellm.model_cost
            ):

                key = combined_stripped_model_name
                _model_info = _get_model_info_from_model_cost(key=key)
                if not _check_provider_match(
                    model_info=_model_info, custom_llm_provider=custom_llm_provider
                ):
                    _model_info = None
            if _model_info is None and stripped_model_name in litellm.model_cost:

                key = stripped_model_name
                _model_info = _get_model_info_from_model_cost(key=key)
                if not _check_provider_match(
                    model_info=_model_info, custom_llm_provider=custom_llm_provider
                ):
                    _model_info = None
            if _model_info is None and split_model in litellm.model_cost:

                key = split_model
                _model_info = _get_model_info_from_model_cost(key=key)
                if not _check_provider_match(
                    model_info=_model_info, custom_llm_provider=custom_llm_provider
                ):
                    _model_info = None

            if _model_info is None or key is None:
                raise ValueError(
                    "This model isn't mapped yet. Add it here - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json"
                )

            _input_cost_per_token: Optional[float] = _model_info.get(
                "input_cost_per_token"
            )
            if _input_cost_per_token is None:
                # default value to 0, be noisy about this
                verbose_logger.debug(
                    "model={}, custom_llm_provider={} has no input_cost_per_token in model_cost_map. Defaulting to 0.".format(
                        model, custom_llm_provider
                    )
                )
                _input_cost_per_token = 0

            _output_cost_per_token: Optional[float] = _model_info.get(
                "output_cost_per_token"
            )
            if _output_cost_per_token is None:
                # default value to 0, be noisy about this
                verbose_logger.debug(
                    "model={}, custom_llm_provider={} has no output_cost_per_token in model_cost_map. Defaulting to 0.".format(
                        model, custom_llm_provider
                    )
                )
                _output_cost_per_token = 0

            return ModelInfoBase(
                key=key,
                max_tokens=_model_info.get("max_tokens", None),
                max_input_tokens=_model_info.get("max_input_tokens", None),
                max_output_tokens=_model_info.get("max_output_tokens", None),
                input_cost_per_token=_input_cost_per_token,
                cache_creation_input_token_cost=_model_info.get(
                    "cache_creation_input_token_cost", None
                ),
                cache_read_input_token_cost=_model_info.get(
                    "cache_read_input_token_cost", None
                ),
                input_cost_per_character=_model_info.get(
                    "input_cost_per_character", None
                ),
                input_cost_per_token_above_128k_tokens=_model_info.get(
                    "input_cost_per_token_above_128k_tokens", None
                ),
                input_cost_per_query=_model_info.get("input_cost_per_query", None),
                input_cost_per_second=_model_info.get("input_cost_per_second", None),
                input_cost_per_audio_token=_model_info.get(
                    "input_cost_per_audio_token", None
                ),
                output_cost_per_token=_output_cost_per_token,
                output_cost_per_audio_token=_model_info.get(
                    "output_cost_per_audio_token", None
                ),
                output_cost_per_character=_model_info.get(
                    "output_cost_per_character", None
                ),
                output_cost_per_token_above_128k_tokens=_model_info.get(
                    "output_cost_per_token_above_128k_tokens", None
                ),
                output_cost_per_character_above_128k_tokens=_model_info.get(
                    "output_cost_per_character_above_128k_tokens", None
                ),
                output_cost_per_second=_model_info.get("output_cost_per_second", None),
                output_cost_per_image=_model_info.get("output_cost_per_image", None),
                output_vector_size=_model_info.get("output_vector_size", None),
                litellm_provider=_model_info.get(
                    "litellm_provider", custom_llm_provider
                ),
                mode=_model_info.get("mode"),  # type: ignore
                supports_system_messages=_model_info.get(
                    "supports_system_messages", None
                ),
                supports_response_schema=_model_info.get(
                    "supports_response_schema", None
                ),
                supports_vision=_model_info.get("supports_vision", False),
                supports_function_calling=_model_info.get(
                    "supports_function_calling", False
                ),
                supports_tool_choice=_model_info.get("supports_tool_choice", False),
                supports_assistant_prefill=_model_info.get(
                    "supports_assistant_prefill", False
                ),
                supports_prompt_caching=_model_info.get(
                    "supports_prompt_caching", False
                ),
                supports_audio_input=_model_info.get("supports_audio_input", False),
                supports_audio_output=_model_info.get("supports_audio_output", False),
                supports_pdf_input=_model_info.get("supports_pdf_input", False),
                supports_embedding_image_input=_model_info.get(
                    "supports_embedding_image_input", False
                ),
                supports_native_streaming=_model_info.get(
                    "supports_native_streaming", None
                ),
                tpm=_model_info.get("tpm", None),
                rpm=_model_info.get("rpm", None),
            )
    except Exception as e:
        verbose_logger.debug(f"Error getting model info: {e}")
        if "OllamaError" in str(e):
            raise e
        raise Exception(
            "This model isn't mapped yet. model={}, custom_llm_provider={}. Add it here - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json.".format(
                model, custom_llm_provider
            )
        )


def get_model_info(model: str, custom_llm_provider: Optional[str] = None) -> ModelInfo:
    """
    Get a dict for the maximum tokens (context window), input_cost_per_token, output_cost_per_token  for a given model.

    Parameters:
    - model (str): The name of the model.
    - custom_llm_provider (str | null): the provider used for the model. If provided, used to check if the litellm model info is for that provider.

    Returns:
        dict: A dictionary containing the following information:
            key: Required[str] # the key in litellm.model_cost which is returned
            max_tokens: Required[Optional[int]]
            max_input_tokens: Required[Optional[int]]
            max_output_tokens: Required[Optional[int]]
            input_cost_per_token: Required[float]
            input_cost_per_character: Optional[float]  # only for vertex ai models
            input_cost_per_token_above_128k_tokens: Optional[float]  # only for vertex ai models
            input_cost_per_character_above_128k_tokens: Optional[
                float
            ]  # only for vertex ai models
            input_cost_per_query: Optional[float] # only for rerank models
            input_cost_per_image: Optional[float]  # only for vertex ai models
            input_cost_per_audio_token: Optional[float]
            input_cost_per_audio_per_second: Optional[float]  # only for vertex ai models
            input_cost_per_video_per_second: Optional[float]  # only for vertex ai models
            output_cost_per_token: Required[float]
            output_cost_per_audio_token: Optional[float]
            output_cost_per_character: Optional[float]  # only for vertex ai models
            output_cost_per_token_above_128k_tokens: Optional[
                float
            ]  # only for vertex ai models
            output_cost_per_character_above_128k_tokens: Optional[
                float
            ]  # only for vertex ai models
            output_cost_per_image: Optional[float]
            output_vector_size: Optional[int]
            output_cost_per_video_per_second: Optional[float]  # only for vertex ai models
            output_cost_per_audio_per_second: Optional[float]  # only for vertex ai models
            litellm_provider: Required[str]
            mode: Required[
                Literal[
                    "completion", "embedding", "image_generation", "chat", "audio_transcription"
                ]
            ]
            supported_openai_params: Required[Optional[List[str]]]
            supports_system_messages: Optional[bool]
            supports_response_schema: Optional[bool]
            supports_vision: Optional[bool]
            supports_function_calling: Optional[bool]
            supports_tool_choice: Optional[bool]
            supports_prompt_caching: Optional[bool]
            supports_audio_input: Optional[bool]
            supports_audio_output: Optional[bool]
            supports_pdf_input: Optional[bool]
    Raises:
        Exception: If the model is not mapped yet.

    Example:
        >>> get_model_info("gpt-4")
        {
            "max_tokens": 8192,
            "input_cost_per_token": 0.00003,
            "output_cost_per_token": 0.00006,
            "litellm_provider": "openai",
            "mode": "chat",
            "supported_openai_params": ["temperature", "max_tokens", "top_p", "frequency_penalty", "presence_penalty"]
        }
    """
    supported_openai_params = litellm.get_supported_openai_params(
        model=model, custom_llm_provider=custom_llm_provider
    )

    _model_info = _get_model_info_helper(
        model=model,
        custom_llm_provider=custom_llm_provider,
    )

    verbose_logger.debug(f"model_info: {_model_info}")

    returned_model_info = ModelInfo(
        **_model_info, supported_openai_params=supported_openai_params
    )

    return returned_model_info


def json_schema_type(python_type_name: str):
    """Converts standard python types to json schema types

    Parameters
    ----------
    python_type_name : str
        __name__ of type

    Returns
    -------
    str
        a standard JSON schema type, "string" if not recognized.
    """
    python_to_json_schema_types = {
        str.__name__: "string",
        int.__name__: "integer",
        float.__name__: "number",
        bool.__name__: "boolean",
        list.__name__: "array",
        dict.__name__: "object",
        "NoneType": "null",
    }

    return python_to_json_schema_types.get(python_type_name, "string")


def function_to_dict(input_function):  # noqa: C901
    """Using type hints and numpy-styled docstring,
    produce a dictionnary usable for OpenAI function calling

    Parameters
    ----------
    input_function : function
        A function with a numpy-style docstring

    Returns
    -------
    dictionnary
        A dictionnary to add to the list passed to `functions` parameter of `litellm.completion`
    """
    # Get function name and docstring
    try:
        import inspect
        from ast import literal_eval

        from numpydoc.docscrape import NumpyDocString
    except Exception as e:
        raise e

    name = input_function.__name__
    docstring = inspect.getdoc(input_function)
    numpydoc = NumpyDocString(docstring)
    description = "\n".join([s.strip() for s in numpydoc["Summary"]])

    # Get function parameters and their types from annotations and docstring
    parameters = {}
    required_params = []
    param_info = inspect.signature(input_function).parameters

    for param_name, param in param_info.items():
        if hasattr(param, "annotation"):
            param_type = json_schema_type(param.annotation.__name__)
        else:
            param_type = None
        param_description = None
        param_enum = None

        # Try to extract param description from docstring using numpydoc
        for param_data in numpydoc["Parameters"]:
            if param_data.name == param_name:
                if hasattr(param_data, "type"):
                    # replace type from docstring rather than annotation
                    param_type = param_data.type
                    if "optional" in param_type:
                        param_type = param_type.split(",")[0]
                    elif "{" in param_type:
                        # may represent a set of acceptable values
                        # translating as enum for function calling
                        try:
                            param_enum = str(list(literal_eval(param_type)))
                            param_type = "string"
                        except Exception:
                            pass
                    param_type = json_schema_type(param_type)
                param_description = "\n".join([s.strip() for s in param_data.desc])

        param_dict = {
            "type": param_type,
            "description": param_description,
            "enum": param_enum,
        }

        parameters[param_name] = dict(
            [(k, v) for k, v in param_dict.items() if isinstance(v, str)]
        )

        # Check if the parameter has no default value (i.e., it's required)
        if param.default == param.empty:
            required_params.append(param_name)

    # Create the dictionary
    result = {
        "name": name,
        "description": description,
        "parameters": {
            "type": "object",
            "properties": parameters,
        },
    }

    # Add "required" key if there are required parameters
    if required_params:
        result["parameters"]["required"] = required_params

    return result


def modify_url(original_url, new_path):
    url = httpx.URL(original_url)
    modified_url = url.copy_with(path=new_path)
    return str(modified_url)


def load_test_model(
    model: str,
    custom_llm_provider: str = "",
    api_base: str = "",
    prompt: str = "",
    num_calls: int = 0,
    force_timeout: int = 0,
):
    test_prompt = "Hey, how's it going"
    test_calls = 100
    if prompt:
        test_prompt = prompt
    if num_calls:
        test_calls = num_calls
    messages = [[{"role": "user", "content": test_prompt}] for _ in range(test_calls)]
    start_time = time.time()
    try:
        litellm.batch_completion(
            model=model,
            messages=messages,
            custom_llm_provider=custom_llm_provider,
            api_base=api_base,
            force_timeout=force_timeout,
        )
        end_time = time.time()
        response_time = end_time - start_time
        return {
            "total_response_time": response_time,
            "calls_made": 100,
            "status": "success",
            "exception": None,
        }
    except Exception as e:
        end_time = time.time()
        response_time = end_time - start_time
        return {
            "total_response_time": response_time,
            "calls_made": 100,
            "status": "failed",
            "exception": e,
        }


def get_provider_fields(custom_llm_provider: str) -> List[ProviderField]:
    """Return the fields required for each provider"""

    if custom_llm_provider == "databricks":
        return litellm.DatabricksConfig().get_required_params()

    elif custom_llm_provider == "ollama":
        return litellm.OllamaConfig().get_required_params()

    elif custom_llm_provider == "azure_ai":
        return litellm.AzureAIStudioConfig().get_required_params()

    else:
        return []


def create_proxy_transport_and_mounts():
    proxies = {
        key: None if url is None else Proxy(url=url)
        for key, url in get_environment_proxies().items()
    }

    sync_proxy_mounts = {}
    async_proxy_mounts = {}

    # Retrieve NO_PROXY environment variable
    no_proxy = os.getenv("NO_PROXY", None)
    no_proxy_urls = no_proxy.split(",") if no_proxy else []

    for key, proxy in proxies.items():
        if proxy is None:
            sync_proxy_mounts[key] = httpx.HTTPTransport()
            async_proxy_mounts[key] = httpx.AsyncHTTPTransport()
        else:
            sync_proxy_mounts[key] = httpx.HTTPTransport(proxy=proxy)
            async_proxy_mounts[key] = httpx.AsyncHTTPTransport(proxy=proxy)

    for url in no_proxy_urls:
        sync_proxy_mounts[url] = httpx.HTTPTransport()
        async_proxy_mounts[url] = httpx.AsyncHTTPTransport()

    return sync_proxy_mounts, async_proxy_mounts


def validate_environment(  # noqa: PLR0915
    model: Optional[str] = None,
    api_key: Optional[str] = None,
    api_base: Optional[str] = None,
) -> dict:
    """
    Checks if the environment variables are valid for the given model.

    Args:
        model (Optional[str]): The name of the model. Defaults to None.
        api_key (Optional[str]): If the user passed in an api key, of their own.

    Returns:
        dict: A dictionary containing the following keys:
            - keys_in_environment (bool): True if all the required keys are present in the environment, False otherwise.
            - missing_keys (List[str]): A list of missing keys in the environment.
    """
    keys_in_environment = False
    missing_keys: List[str] = []

    if model is None:
        return {
            "keys_in_environment": keys_in_environment,
            "missing_keys": missing_keys,
        }
    ## EXTRACT LLM PROVIDER - if model name provided
    try:
        _, custom_llm_provider, _, _ = get_llm_provider(model=model)
    except Exception:
        custom_llm_provider = None

    if custom_llm_provider:
        if custom_llm_provider == "openai":
            if "OPENAI_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("OPENAI_API_KEY")
        elif custom_llm_provider == "azure":
            if (
                "AZURE_API_BASE" in os.environ
                and "AZURE_API_VERSION" in os.environ
                and "AZURE_API_KEY" in os.environ
            ):
                keys_in_environment = True
            else:
                missing_keys.extend(
                    ["AZURE_API_BASE", "AZURE_API_VERSION", "AZURE_API_KEY"]
                )
        elif custom_llm_provider == "anthropic":
            if "ANTHROPIC_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("ANTHROPIC_API_KEY")
        elif custom_llm_provider == "cohere":
            if "COHERE_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("COHERE_API_KEY")
        elif custom_llm_provider == "replicate":
            if "REPLICATE_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("REPLICATE_API_KEY")
        elif custom_llm_provider == "openrouter":
            if "OPENROUTER_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("OPENROUTER_API_KEY")
        elif custom_llm_provider == "vertex_ai":
            if "VERTEXAI_PROJECT" in os.environ and "VERTEXAI_LOCATION" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.extend(["VERTEXAI_PROJECT", "VERTEXAI_LOCATION"])
        elif custom_llm_provider == "huggingface":
            if "HUGGINGFACE_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("HUGGINGFACE_API_KEY")
        elif custom_llm_provider == "ai21":
            if "AI21_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("AI21_API_KEY")
        elif custom_llm_provider == "together_ai":
            if "TOGETHERAI_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("TOGETHERAI_API_KEY")
        elif custom_llm_provider == "aleph_alpha":
            if "ALEPH_ALPHA_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("ALEPH_ALPHA_API_KEY")
        elif custom_llm_provider == "baseten":
            if "BASETEN_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("BASETEN_API_KEY")
        elif custom_llm_provider == "nlp_cloud":
            if "NLP_CLOUD_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("NLP_CLOUD_API_KEY")
        elif custom_llm_provider == "bedrock" or custom_llm_provider == "sagemaker":
            if (
                "AWS_ACCESS_KEY_ID" in os.environ
                and "AWS_SECRET_ACCESS_KEY" in os.environ
            ):
                keys_in_environment = True
            else:
                missing_keys.append("AWS_ACCESS_KEY_ID")
                missing_keys.append("AWS_SECRET_ACCESS_KEY")
        elif custom_llm_provider in ["ollama", "ollama_chat"]:
            if "OLLAMA_API_BASE" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("OLLAMA_API_BASE")
        elif custom_llm_provider == "anyscale":
            if "ANYSCALE_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("ANYSCALE_API_KEY")
        elif custom_llm_provider == "deepinfra":
            if "DEEPINFRA_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("DEEPINFRA_API_KEY")
        elif custom_llm_provider == "gemini":
            if "GEMINI_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("GEMINI_API_KEY")
        elif custom_llm_provider == "groq":
            if "GROQ_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("GROQ_API_KEY")
        elif custom_llm_provider == "nvidia_nim":
            if "NVIDIA_NIM_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("NVIDIA_NIM_API_KEY")
        elif custom_llm_provider == "cerebras":
            if "CEREBRAS_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("CEREBRAS_API_KEY")
        elif custom_llm_provider == "xai":
            if "XAI_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("XAI_API_KEY")
        elif custom_llm_provider == "ai21_chat":
            if "AI21_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("AI21_API_KEY")
        elif custom_llm_provider == "volcengine":
            if "VOLCENGINE_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("VOLCENGINE_API_KEY")
        elif (
            custom_llm_provider == "codestral"
            or custom_llm_provider == "text-completion-codestral"
        ):
            if "CODESTRAL_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("CODESTRAL_API_KEY")
        elif custom_llm_provider == "deepseek":
            if "DEEPSEEK_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("DEEPSEEK_API_KEY")
        elif custom_llm_provider == "mistral":
            if "MISTRAL_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("MISTRAL_API_KEY")
        elif custom_llm_provider == "palm":
            if "PALM_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("PALM_API_KEY")
        elif custom_llm_provider == "perplexity":
            if "PERPLEXITYAI_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("PERPLEXITYAI_API_KEY")
        elif custom_llm_provider == "voyage":
            if "VOYAGE_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("VOYAGE_API_KEY")
        elif custom_llm_provider == "fireworks_ai":
            if (
                "FIREWORKS_AI_API_KEY" in os.environ
                or "FIREWORKS_API_KEY" in os.environ
                or "FIREWORKSAI_API_KEY" in os.environ
                or "FIREWORKS_AI_TOKEN" in os.environ
            ):
                keys_in_environment = True
            else:
                missing_keys.append("FIREWORKS_AI_API_KEY")
        elif custom_llm_provider == "cloudflare":
            if "CLOUDFLARE_API_KEY" in os.environ and (
                "CLOUDFLARE_ACCOUNT_ID" in os.environ
                or "CLOUDFLARE_API_BASE" in os.environ
            ):
                keys_in_environment = True
            else:
                missing_keys.append("CLOUDFLARE_API_KEY")
                missing_keys.append("CLOUDFLARE_API_BASE")
    else:
        ## openai - chatcompletion + text completion
        if (
            model in litellm.open_ai_chat_completion_models
            or model in litellm.open_ai_text_completion_models
            or model in litellm.open_ai_embedding_models
            or model in litellm.openai_image_generation_models
        ):
            if "OPENAI_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("OPENAI_API_KEY")
        ## anthropic
        elif model in litellm.anthropic_models:
            if "ANTHROPIC_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("ANTHROPIC_API_KEY")
        ## cohere
        elif model in litellm.cohere_models:
            if "COHERE_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("COHERE_API_KEY")
        ## replicate
        elif model in litellm.replicate_models:
            if "REPLICATE_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("REPLICATE_API_KEY")
        ## openrouter
        elif model in litellm.openrouter_models:
            if "OPENROUTER_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("OPENROUTER_API_KEY")
        ## vertex - text + chat models
        elif (
            model in litellm.vertex_chat_models
            or model in litellm.vertex_text_models
            or model in litellm.models_by_provider["vertex_ai"]
        ):
            if "VERTEXAI_PROJECT" in os.environ and "VERTEXAI_LOCATION" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.extend(["VERTEXAI_PROJECT", "VERTEXAI_LOCATION"])
        ## huggingface
        elif model in litellm.huggingface_models:
            if "HUGGINGFACE_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("HUGGINGFACE_API_KEY")
        ## ai21
        elif model in litellm.ai21_models:
            if "AI21_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("AI21_API_KEY")
        ## together_ai
        elif model in litellm.together_ai_models:
            if "TOGETHERAI_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("TOGETHERAI_API_KEY")
        ## aleph_alpha
        elif model in litellm.aleph_alpha_models:
            if "ALEPH_ALPHA_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("ALEPH_ALPHA_API_KEY")
        ## baseten
        elif model in litellm.baseten_models:
            if "BASETEN_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("BASETEN_API_KEY")
        ## nlp_cloud
        elif model in litellm.nlp_cloud_models:
            if "NLP_CLOUD_API_KEY" in os.environ:
                keys_in_environment = True
            else:
                missing_keys.append("NLP_CLOUD_API_KEY")

    if api_key is not None:
        new_missing_keys = []
        for key in missing_keys:
            if "api_key" not in key.lower():
                new_missing_keys.append(key)
        missing_keys = new_missing_keys

    if api_base is not None:
        new_missing_keys = []
        for key in missing_keys:
            if "api_base" not in key.lower():
                new_missing_keys.append(key)
        missing_keys = new_missing_keys

    if len(missing_keys) == 0:  # no missing keys
        keys_in_environment = True

    return {"keys_in_environment": keys_in_environment, "missing_keys": missing_keys}


def acreate(*args, **kwargs):  ## Thin client to handle the acreate langchain call
    return litellm.acompletion(*args, **kwargs)


def prompt_token_calculator(model, messages):
    # use tiktoken or anthropic's tokenizer depending on the model
    text = " ".join(message["content"] for message in messages)
    num_tokens = 0
    if "claude" in model:
        try:
            import anthropic
        except Exception:
            Exception("Anthropic import failed please run `pip install anthropic`")
        from anthropic import AI_PROMPT, HUMAN_PROMPT, Anthropic

        anthropic_obj = Anthropic()
        num_tokens = anthropic_obj.count_tokens(text)
    else:
        num_tokens = len(encoding.encode(text))
    return num_tokens


def valid_model(model):
    try:
        # for a given model name, check if the user has the right permissions to access the model
        if (
            model in litellm.open_ai_chat_completion_models
            or model in litellm.open_ai_text_completion_models
        ):
            openai.models.retrieve(model)
        else:
            messages = [{"role": "user", "content": "Hello World"}]
            litellm.completion(model=model, messages=messages)
    except Exception:
        raise BadRequestError(message="", model=model, llm_provider="")


def check_valid_key(model: str, api_key: str):
    """
    Checks if a given API key is valid for a specific model by making a litellm.completion call with max_tokens=10

    Args:
        model (str): The name of the model to check the API key against.
        api_key (str): The API key to be checked.

    Returns:
        bool: True if the API key is valid for the model, False otherwise.
    """
    messages = [{"role": "user", "content": "Hey, how's it going?"}]
    try:
        litellm.completion(
            model=model, messages=messages, api_key=api_key, max_tokens=10
        )
        return True
    except AuthenticationError:
        return False
    except Exception:
        return False


def _should_retry(status_code: int):
    """
    Retries on 408, 409, 429 and 500 errors.

    Any client error in the 400-499 range that isn't explicitly handled (such as 400 Bad Request, 401 Unauthorized, 403 Forbidden, 404 Not Found, etc.) would not trigger a retry.

    Reimplementation of openai's should retry logic, since that one can't be imported.
    https://github.com/openai/openai-python/blob/af67cfab4210d8e497c05390ce14f39105c77519/src/openai/_base_client.py#L639
    """
    # If the server explicitly says whether or not to retry, obey.
    # Retry on request timeouts.
    if status_code == 408:
        return True

    # Retry on lock timeouts.
    if status_code == 409:
        return True

    # Retry on rate limits.
    if status_code == 429:
        return True

    # Retry internal errors.
    if status_code >= 500:
        return True

    return False


def _get_retry_after_from_exception_header(
    response_headers: Optional[httpx.Headers] = None,
):
    """
    Reimplementation of openai's calculate retry after, since that one can't be imported.
    https://github.com/openai/openai-python/blob/af67cfab4210d8e497c05390ce14f39105c77519/src/openai/_base_client.py#L631
    """
    try:
        import email  # openai import

        # About the Retry-After header: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Retry-After
        #
        # <http-date>". See https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Retry-After#syntax for
        # details.
        if response_headers is not None:
            retry_header = response_headers.get("retry-after")
            try:
                retry_after = int(retry_header)
            except Exception:
                retry_date_tuple = email.utils.parsedate_tz(retry_header)  # type: ignore
                if retry_date_tuple is None:
                    retry_after = -1
                else:
                    retry_date = email.utils.mktime_tz(retry_date_tuple)  # type: ignore
                    retry_after = int(retry_date - time.time())
        else:
            retry_after = -1

        return retry_after

    except Exception:
        retry_after = -1


def _calculate_retry_after(
    remaining_retries: int,
    max_retries: int,
    response_headers: Optional[httpx.Headers] = None,
    min_timeout: int = 0,
) -> Union[float, int]:
    retry_after = _get_retry_after_from_exception_header(response_headers)

    # If the API asks us to wait a certain amount of time (and it's a reasonable amount), just do what it says.
    if retry_after is not None and 0 < retry_after <= 60:
        return retry_after

    initial_retry_delay = 0.5
    max_retry_delay = 8.0
    nb_retries = max_retries - remaining_retries

    # Apply exponential backoff, but not more than the max.
    sleep_seconds = min(initial_retry_delay * pow(2.0, nb_retries), max_retry_delay)

    # Apply some jitter, plus-or-minus half a second.
    jitter = 1 - 0.25 * random.random()
    timeout = sleep_seconds * jitter
    return timeout if timeout >= min_timeout else min_timeout


# custom prompt helper function
def register_prompt_template(
    model: str,
    roles: dict,
    initial_prompt_value: str = "",
    final_prompt_value: str = "",
):
    """
    Register a prompt template to follow your custom format for a given model

    Args:
        model (str): The name of the model.
        roles (dict): A dictionary mapping roles to their respective prompt values.
        initial_prompt_value (str, optional): The initial prompt value. Defaults to "".
        final_prompt_value (str, optional): The final prompt value. Defaults to "".

    Returns:
        dict: The updated custom prompt dictionary.
    Example usage:
    ```
    import litellm
    litellm.register_prompt_template(
            model="llama-2",
        initial_prompt_value="You are a good assistant" # [OPTIONAL]
            roles={
            "system": {
                "pre_message": "[INST] <<SYS>>\n", # [OPTIONAL]
                "post_message": "\n<</SYS>>\n [/INST]\n" # [OPTIONAL]
            },
            "user": {
                "pre_message": "[INST] ", # [OPTIONAL]
                "post_message": " [/INST]" # [OPTIONAL]
            },
            "assistant": {
                "pre_message": "\n" # [OPTIONAL]
                "post_message": "\n" # [OPTIONAL]
            }
        }
        final_prompt_value="Now answer as best you can:" # [OPTIONAL]
    )
    ```
    """
    model = get_llm_provider(model=model)[0]
    litellm.custom_prompt_dict[model] = {
        "roles": roles,
        "initial_prompt_value": initial_prompt_value,
        "final_prompt_value": final_prompt_value,
    }
    return litellm.custom_prompt_dict


class TextCompletionStreamWrapper:
    def __init__(
        self,
        completion_stream,
        model,
        stream_options: Optional[dict] = None,
        custom_llm_provider: Optional[str] = None,
    ):
        self.completion_stream = completion_stream
        self.model = model
        self.stream_options = stream_options
        self.custom_llm_provider = custom_llm_provider

    def __iter__(self):
        return self

    def __aiter__(self):
        return self

    def convert_to_text_completion_object(self, chunk: ModelResponse):
        try:
            response = TextCompletionResponse()
            response["id"] = chunk.get("id", None)
            response["object"] = "text_completion"
            response["created"] = chunk.get("created", None)
            response["model"] = chunk.get("model", None)
            text_choices = TextChoices()
            if isinstance(
                chunk, Choices
            ):  # chunk should always be of type StreamingChoices
                raise Exception
            text_choices["text"] = chunk["choices"][0]["delta"]["content"]
            text_choices["index"] = chunk["choices"][0]["index"]
            text_choices["finish_reason"] = chunk["choices"][0]["finish_reason"]
            response["choices"] = [text_choices]

            # only pass usage when stream_options["include_usage"] is True
            if (
                self.stream_options
                and self.stream_options.get("include_usage", False) is True
            ):
                response["usage"] = chunk.get("usage", None)

            return response
        except Exception as e:
            raise Exception(
                f"Error occurred converting to text completion object - chunk: {chunk}; Error: {str(e)}"
            )

    def __next__(self):
        # model_response = ModelResponse(stream=True, model=self.model)
        TextCompletionResponse()
        try:
            for chunk in self.completion_stream:
                if chunk == "None" or chunk is None:
                    raise Exception
                processed_chunk = self.convert_to_text_completion_object(chunk=chunk)
                return processed_chunk
            raise StopIteration
        except StopIteration:
            raise StopIteration
        except Exception as e:
            raise exception_type(
                model=self.model,
                custom_llm_provider=self.custom_llm_provider or "",
                original_exception=e,
                completion_kwargs={},
                extra_kwargs={},
            )

    async def __anext__(self):
        try:
            async for chunk in self.completion_stream:
                if chunk == "None" or chunk is None:
                    raise Exception
                processed_chunk = self.convert_to_text_completion_object(chunk=chunk)
                return processed_chunk
            raise StopIteration
        except StopIteration:
            raise StopAsyncIteration


def mock_completion_streaming_obj(
    model_response, mock_response, model, n: Optional[int] = None
):
    if isinstance(mock_response, litellm.MockException):
        raise mock_response
    for i in range(0, len(mock_response), 3):
        completion_obj = Delta(role="assistant", content=mock_response[i : i + 3])
        if n is None:
            model_response.choices[0].delta = completion_obj
        else:
            _all_choices = []
            for j in range(n):
                _streaming_choice = litellm.utils.StreamingChoices(
                    index=j,
                    delta=litellm.utils.Delta(
                        role="assistant", content=mock_response[i : i + 3]
                    ),
                )
                _all_choices.append(_streaming_choice)
            model_response.choices = _all_choices
        yield model_response


async def async_mock_completion_streaming_obj(
    model_response, mock_response, model, n: Optional[int] = None
):
    if isinstance(mock_response, litellm.MockException):
        raise mock_response
    for i in range(0, len(mock_response), 3):
        completion_obj = Delta(role="assistant", content=mock_response[i : i + 3])
        if n is None:
            model_response.choices[0].delta = completion_obj
        else:
            _all_choices = []
            for j in range(n):
                _streaming_choice = litellm.utils.StreamingChoices(
                    index=j,
                    delta=litellm.utils.Delta(
                        role="assistant", content=mock_response[i : i + 3]
                    ),
                )
                _all_choices.append(_streaming_choice)
            model_response.choices = _all_choices
        yield model_response


########## Reading Config File ############################
def read_config_args(config_path) -> dict:
    try:
        import os

        os.getcwd()
        with open(config_path, "r") as config_file:
            config = json.load(config_file)

        # read keys/ values from config file and return them
        return config
    except Exception as e:
        raise e


########## experimental completion variants ############################


def process_system_message(system_message, max_tokens, model):
    system_message_event = {"role": "system", "content": system_message}
    system_message_tokens = get_token_count([system_message_event], model)

    if system_message_tokens > max_tokens:
        print_verbose(
            "`tokentrimmer`: Warning, system message exceeds token limit. Trimming..."
        )
        # shorten system message to fit within max_tokens
        new_system_message = shorten_message_to_fit_limit(
            system_message_event, max_tokens, model
        )
        system_message_tokens = get_token_count([new_system_message], model)

    return system_message_event, max_tokens - system_message_tokens


def process_messages(messages, max_tokens, model):
    # Process messages from older to more recent
    messages = messages[::-1]
    final_messages = []

    for message in messages:
        used_tokens = get_token_count(final_messages, model)
        available_tokens = max_tokens - used_tokens
        if available_tokens <= 3:
            break
        final_messages = attempt_message_addition(
            final_messages=final_messages,
            message=message,
            available_tokens=available_tokens,
            max_tokens=max_tokens,
            model=model,
        )

    return final_messages


def attempt_message_addition(
    final_messages, message, available_tokens, max_tokens, model
):
    temp_messages = [message] + final_messages
    temp_message_tokens = get_token_count(messages=temp_messages, model=model)

    if temp_message_tokens <= max_tokens:
        return temp_messages

    # if temp_message_tokens > max_tokens, try shortening temp_messages
    elif "function_call" not in message:
        # fit updated_message to be within temp_message_tokens - max_tokens (aka the amount temp_message_tokens is greate than max_tokens)
        updated_message = shorten_message_to_fit_limit(message, available_tokens, model)
        if can_add_message(updated_message, final_messages, max_tokens, model):
            return [updated_message] + final_messages

    return final_messages


def can_add_message(message, messages, max_tokens, model):
    if get_token_count(messages + [message], model) <= max_tokens:
        return True
    return False


def get_token_count(messages, model):
    return token_counter(model=model, messages=messages)


def shorten_message_to_fit_limit(message, tokens_needed, model: Optional[str]):
    """
    Shorten a message to fit within a token limit by removing characters from the middle.
    """

    # For OpenAI models, even blank messages cost 7 token,
    # and if the buffer is less than 3, the while loop will never end,
    # hence the value 10.
    if model is not None and "gpt" in model and tokens_needed <= 10:
        return message

    content = message["content"]

    while True:
        total_tokens = get_token_count([message], model)

        if total_tokens <= tokens_needed:
            break

        ratio = (tokens_needed) / total_tokens

        new_length = int(len(content) * ratio) - 1
        new_length = max(0, new_length)

        half_length = new_length // 2
        left_half = content[:half_length]
        right_half = content[-half_length:]

        trimmed_content = left_half + ".." + right_half
        message["content"] = trimmed_content
        content = trimmed_content

    return message


# LiteLLM token trimmer
# this code is borrowed from https://github.com/KillianLucas/tokentrim/blob/main/tokentrim/tokentrim.py
# Credits for this code go to Killian Lucas
def trim_messages(
    messages,
    model: Optional[str] = None,
    trim_ratio: float = 0.75,
    return_response_tokens: bool = False,
    max_tokens=None,
):
    """
    Trim a list of messages to fit within a model's token limit.

    Args:
        messages: Input messages to be trimmed. Each message is a dictionary with 'role' and 'content'.
        model: The LiteLLM model being used (determines the token limit).
        trim_ratio: Target ratio of tokens to use after trimming. Default is 0.75, meaning it will trim messages so they use about 75% of the model's token limit.
        return_response_tokens: If True, also return the number of tokens left available for the response after trimming.
        max_tokens: Instead of specifying a model or trim_ratio, you can specify this directly.

    Returns:
        Trimmed messages and optionally the number of tokens available for response.
    """
    # Initialize max_tokens
    # if users pass in max tokens, trim to this amount
    messages = copy.deepcopy(messages)
    try:
        if max_tokens is None:
            # Check if model is valid
            if model in litellm.model_cost:
                max_tokens_for_model = litellm.model_cost[model].get(
                    "max_input_tokens", litellm.model_cost[model]["max_tokens"]
                )
                max_tokens = int(max_tokens_for_model * trim_ratio)
            else:
                # if user did not specify max (input) tokens
                # or passed an llm litellm does not know
                # do nothing, just return messages
                return messages

        system_message = ""
        for message in messages:
            if message["role"] == "system":
                system_message += "\n" if system_message else ""
                system_message += message["content"]

        ## Handle Tool Call ## - check if last message is a tool response, return as is - https://github.com/BerriAI/litellm/issues/4931
        tool_messages = []

        for message in reversed(messages):
            if message["role"] != "tool":
                break
            tool_messages.append(message)
        # # Remove the collected tool messages from the original list
        if len(tool_messages):
            messages = messages[: -len(tool_messages)]

        current_tokens = token_counter(model=model or "", messages=messages)
        print_verbose(f"Current tokens: {current_tokens}, max tokens: {max_tokens}")

        # Do nothing if current tokens under messages
        if current_tokens < max_tokens:
            return messages

        #### Trimming messages if current_tokens > max_tokens
        print_verbose(
            f"Need to trim input messages: {messages}, current_tokens{current_tokens}, max_tokens: {max_tokens}"
        )
        system_message_event: Optional[dict] = None
        if system_message:
            system_message_event, max_tokens = process_system_message(
                system_message=system_message, max_tokens=max_tokens, model=model
            )

            if max_tokens == 0:  # the system messages are too long
                return [system_message_event]

            # Since all system messages are combined and trimmed to fit the max_tokens,
            # we remove all system messages from the messages list
            messages = [message for message in messages if message["role"] != "system"]

        final_messages = process_messages(
            messages=messages, max_tokens=max_tokens, model=model
        )

        # Add system message to the beginning of the final messages
        if system_message_event:
            final_messages = [system_message_event] + final_messages

        if len(tool_messages) > 0:
            final_messages.extend(tool_messages)

        if (
            return_response_tokens
        ):  # if user wants token count with new trimmed messages
            response_tokens = max_tokens - get_token_count(final_messages, model)
            return final_messages, response_tokens
        return final_messages
    except Exception as e:  # [NON-Blocking, if error occurs just return final_messages
        verbose_logger.exception(
            "Got exception while token trimming - {}".format(str(e))
        )
        return messages


def get_valid_models(check_provider_endpoint: bool = False) -> List[str]:
    """
    Returns a list of valid LLMs based on the set environment variables

    Args:
        check_provider_endpoint: If True, will check the provider's endpoint for valid models.

    Returns:
        A list of valid LLMs
    """
    try:
        # get keys set in .env
        environ_keys = os.environ.keys()
        valid_providers = []
        # for all valid providers, make a list of supported llms
        valid_models = []

        for provider in litellm.provider_list:
            # edge case litellm has together_ai as a provider, it should be togetherai
            env_provider_1 = provider.replace("_", "")
            env_provider_2 = provider

            # litellm standardizes expected provider keys to
            # PROVIDER_API_KEY. Example: OPENAI_API_KEY, COHERE_API_KEY
            expected_provider_key_1 = f"{env_provider_1.upper()}_API_KEY"
            expected_provider_key_2 = f"{env_provider_2.upper()}_API_KEY"
            if (
                expected_provider_key_1 in environ_keys
                or expected_provider_key_2 in environ_keys
            ):
                # key is set
                valid_providers.append(provider)

        for provider in valid_providers:
            provider_config = ProviderConfigManager.get_provider_model_info(
                model=None,
                provider=LlmProviders(provider),
            )

            if provider == "azure":
                valid_models.append("Azure-LLM")
            elif provider_config is not None and check_provider_endpoint:
                valid_models.extend(provider_config.get_models())
            else:
                models_for_provider = litellm.models_by_provider.get(provider, [])
                valid_models.extend(models_for_provider)
        return valid_models
    except Exception as e:
        verbose_logger.debug(f"Error getting valid models: {e}")
        return []  # NON-Blocking


def print_args_passed_to_litellm(original_function, args, kwargs):
    if not _is_debugging_on():
        return
    try:
        # we've already printed this for acompletion, don't print for completion
        if (
            "acompletion" in kwargs
            and kwargs["acompletion"] is True
            and original_function.__name__ == "completion"
        ):
            return
        elif (
            "aembedding" in kwargs
            and kwargs["aembedding"] is True
            and original_function.__name__ == "embedding"
        ):
            return
        elif (
            "aimg_generation" in kwargs
            and kwargs["aimg_generation"] is True
            and original_function.__name__ == "img_generation"
        ):
            return

        args_str = ", ".join(map(repr, args))
        kwargs_str = ", ".join(f"{key}={repr(value)}" for key, value in kwargs.items())
        print_verbose(
            "\n",
        )  # new line before
        print_verbose(
            "\033[92mRequest to litellm:\033[0m",
        )
        if args and kwargs:
            print_verbose(
                f"\033[92mlitellm.{original_function.__name__}({args_str}, {kwargs_str})\033[0m"
            )
        elif args:
            print_verbose(
                f"\033[92mlitellm.{original_function.__name__}({args_str})\033[0m"
            )
        elif kwargs:
            print_verbose(
                f"\033[92mlitellm.{original_function.__name__}({kwargs_str})\033[0m"
            )
        else:
            print_verbose(f"\033[92mlitellm.{original_function.__name__}()\033[0m")
        print_verbose("\n")  # new line after
    except Exception:
        # This should always be non blocking
        pass


def get_logging_id(start_time, response_obj):
    try:
        response_id = (
            "time-" + start_time.strftime("%H-%M-%S-%f") + "_" + response_obj.get("id")
        )
        return response_id
    except Exception:
        return None


def _get_base_model_from_metadata(model_call_details=None):
    if model_call_details is None:
        return None
    litellm_params = model_call_details.get("litellm_params", {})
    if litellm_params is not None:
        _base_model = litellm_params.get("base_model", None)
        if _base_model is not None:
            return _base_model
        metadata = litellm_params.get("metadata", {})

        return _get_base_model_from_litellm_call_metadata(metadata=metadata)
    return None


class ModelResponseIterator:
    def __init__(self, model_response: ModelResponse, convert_to_delta: bool = False):
        if convert_to_delta is True:
            self.model_response = ModelResponse(stream=True)
            _delta = self.model_response.choices[0].delta  # type: ignore
            _delta.content = model_response.choices[0].message.content  # type: ignore
        else:
            self.model_response = model_response
        self.is_done = False

    # Sync iterator
    def __iter__(self):
        return self

    def __next__(self):
        if self.is_done:
            raise StopIteration
        self.is_done = True
        return self.model_response

    # Async iterator
    def __aiter__(self):
        return self

    async def __anext__(self):
        if self.is_done:
            raise StopAsyncIteration
        self.is_done = True
        return self.model_response


class ModelResponseListIterator:
    def __init__(self, model_responses):
        self.model_responses = model_responses
        self.index = 0

    # Sync iterator
    def __iter__(self):
        return self

    def __next__(self):
        if self.index >= len(self.model_responses):
            raise StopIteration
        model_response = self.model_responses[self.index]
        self.index += 1
        return model_response

    # Async iterator
    def __aiter__(self):
        return self

    async def __anext__(self):
        if self.index >= len(self.model_responses):
            raise StopAsyncIteration
        model_response = self.model_responses[self.index]
        self.index += 1
        return model_response


class CustomModelResponseIterator(Iterable):
    def __init__(self) -> None:
        super().__init__()


def is_cached_message(message: AllMessageValues) -> bool:
    """
    Returns true, if message is marked as needing to be cached.

    Used for anthropic/gemini context caching.

    Follows the anthropic format {"cache_control": {"type": "ephemeral"}}
    """
    if "content" not in message:
        return False
    if message["content"] is None or isinstance(message["content"], str):
        return False

    for content in message["content"]:
        if (
            content["type"] == "text"
            and content.get("cache_control") is not None
            and content["cache_control"]["type"] == "ephemeral"  # type: ignore
        ):
            return True

    return False


def is_base64_encoded(s: str) -> bool:
    try:
        # Strip out the prefix if it exists
        if not s.startswith(
            "data:"
        ):  # require `data:` for base64 str, like openai. Prevents false positives like s='Dog'
            return False

        s = s.split(",")[1]

        # Try to decode the string
        decoded_bytes = base64.b64decode(s, validate=True)

        # Check if the original string can be re-encoded to the same string
        return base64.b64encode(decoded_bytes).decode("utf-8") == s
    except Exception:
        return False


def get_base64_str(s: str) -> str:
    """
    s: b64str OR 
    """
    if "," in s:
        return s.split(",")[1]
    return s


def has_tool_call_blocks(messages: List[AllMessageValues]) -> bool:
    """
    Returns true, if messages has tool call blocks.

    Used for anthropic/bedrock message validation.
    """
    for message in messages:
        if message.get("tool_calls") is not None:
            return True
    return False


def add_dummy_tool(custom_llm_provider: str) -> List[ChatCompletionToolParam]:
    """
    Prevent Anthropic from raising error when tool_use block exists but no tools are provided.

    Relevent Issues: https://github.com/BerriAI/litellm/issues/5388, https://github.com/BerriAI/litellm/issues/5747
    """
    return [
        ChatCompletionToolParam(
            type="function",
            function=ChatCompletionToolParamFunctionChunk(
                name="dummy_tool",
                description="This is a dummy tool call",  # provided to satisfy bedrock constraint.
                parameters={
                    "type": "object",
                    "properties": {},
                },
            ),
        )
    ]


from litellm.types.llms.openai import (
    ChatCompletionAudioObject,
    ChatCompletionImageObject,
    ChatCompletionTextObject,
    ChatCompletionUserMessage,
    OpenAIMessageContent,
    ValidUserMessageContentTypes,
)


def convert_to_dict(message: Union[BaseModel, dict]) -> dict:
    """
    Converts a message to a dictionary if it's a Pydantic model.

    Args:
        message: The message, which may be a Pydantic model or a dictionary.

    Returns:
        dict: The converted message.
    """
    if isinstance(message, BaseModel):
        return message.model_dump(exclude_none=True)
    elif isinstance(message, dict):
        return message
    else:
        raise TypeError(
            f"Invalid message type: {type(message)}. Expected dict or Pydantic model."
        )


def validate_chat_completion_messages(messages: List[AllMessageValues]):
    """
    Ensures all messages are valid OpenAI chat completion messages.
    """
    # 1. convert all messages to dict
    messages = [
        cast(AllMessageValues, convert_to_dict(cast(dict, m))) for m in messages
    ]
    # 2. validate user messages
    return validate_chat_completion_user_messages(messages=messages)


def validate_chat_completion_user_messages(messages: List[AllMessageValues]):
    """
    Ensures all user messages are valid OpenAI chat completion messages.

    Args:
        messages: List of message dictionaries
        message_content_type: Type to validate content against

    Returns:
        List[dict]: The validated messages

    Raises:
        ValueError: If any message is invalid
    """
    for idx, m in enumerate(messages):
        try:
            if m["role"] == "user":
                user_content = m.get("content")
                if user_content is not None:
                    if isinstance(user_content, str):
                        continue
                    elif isinstance(user_content, list):
                        for item in user_content:
                            if isinstance(item, dict):
                                if item.get("type") not in ValidUserMessageContentTypes:
                                    raise Exception("invalid content type")
        except Exception as e:
            if "invalid content type" in str(e):
                raise Exception(
                    f"Invalid user message={m} at index {idx}. Please ensure all user messages are valid OpenAI chat completion messages."
                )
            else:
                raise e

    return messages


def validate_chat_completion_tool_choice(
    tool_choice: Optional[Union[dict, str]]
) -> Optional[Union[dict, str]]:
    """
    Confirm the tool choice is passed in the OpenAI format.

    Prevents user errors like: https://github.com/BerriAI/litellm/issues/7483
    """
    from litellm.types.llms.openai import (
        ChatCompletionToolChoiceObjectParam,
        ChatCompletionToolChoiceStringValues,
    )

    if tool_choice is None:
        return tool_choice
    elif isinstance(tool_choice, str):
        return tool_choice
    elif isinstance(tool_choice, dict):
        if tool_choice.get("type") is None or tool_choice.get("function") is None:
            raise Exception(
                f"Invalid tool choice, tool_choice={tool_choice}. Please ensure tool_choice follows the OpenAI spec"
            )
        return tool_choice
    raise Exception(
        f"Invalid tool choice, tool_choice={tool_choice}. Got={type(tool_choice)}. Expecting str, or dict. Please ensure tool_choice follows the OpenAI tool_choice spec"
    )


class ProviderConfigManager:
    @staticmethod
    def get_provider_chat_config(  # noqa: PLR0915
        model: str, provider: LlmProviders
    ) -> BaseConfig:
        """
        Returns the provider config for a given provider.
        """
        if (
            provider == LlmProviders.OPENAI
            and litellm.openaiOSeriesConfig.is_model_o_series_model(model=model)
        ):
            return litellm.openaiOSeriesConfig
        elif litellm.LlmProviders.DEEPSEEK == provider:
            return litellm.DeepSeekChatConfig()
        elif litellm.LlmProviders.GROQ == provider:
            return litellm.GroqChatConfig()
        elif litellm.LlmProviders.DATABRICKS == provider:
            return litellm.DatabricksConfig()
        elif litellm.LlmProviders.XAI == provider:
            return litellm.XAIChatConfig()
        elif litellm.LlmProviders.TEXT_COMPLETION_OPENAI == provider:
            return litellm.OpenAITextCompletionConfig()
        elif litellm.LlmProviders.COHERE_CHAT == provider:
            return litellm.CohereChatConfig()
        elif litellm.LlmProviders.COHERE == provider:
            return litellm.CohereConfig()
        elif litellm.LlmProviders.CLARIFAI == provider:
            return litellm.ClarifaiConfig()
        elif litellm.LlmProviders.ANTHROPIC == provider:
            return litellm.AnthropicConfig()
        elif litellm.LlmProviders.ANTHROPIC_TEXT == provider:
            return litellm.AnthropicTextConfig()
        elif litellm.LlmProviders.VERTEX_AI == provider:
            if "claude" in model:
                return litellm.VertexAIAnthropicConfig()
        elif litellm.LlmProviders.CLOUDFLARE == provider:
            return litellm.CloudflareChatConfig()
        elif litellm.LlmProviders.SAGEMAKER_CHAT == provider:
            return litellm.SagemakerChatConfig()
        elif litellm.LlmProviders.SAGEMAKER == provider:
            return litellm.SagemakerConfig()
        elif litellm.LlmProviders.FIREWORKS_AI == provider:
            return litellm.FireworksAIConfig()
        elif litellm.LlmProviders.FRIENDLIAI == provider:
            return litellm.FriendliaiChatConfig()
        elif litellm.LlmProviders.WATSONX == provider:
            return litellm.IBMWatsonXChatConfig()
        elif litellm.LlmProviders.WATSONX_TEXT == provider:
            return litellm.IBMWatsonXAIConfig()
        elif litellm.LlmProviders.EMPOWER == provider:
            return litellm.EmpowerChatConfig()
        elif litellm.LlmProviders.GITHUB == provider:
            return litellm.GithubChatConfig()
        elif (
            litellm.LlmProviders.CUSTOM == provider
            or litellm.LlmProviders.CUSTOM_OPENAI == provider
            or litellm.LlmProviders.OPENAI_LIKE == provider
            or litellm.LlmProviders.LITELLM_PROXY == provider
        ):
            return litellm.OpenAILikeChatConfig()
        elif litellm.LlmProviders.AIOHTTP_OPENAI == provider:
            return litellm.AiohttpOpenAIChatConfig()
        elif litellm.LlmProviders.HOSTED_VLLM == provider:
            return litellm.HostedVLLMChatConfig()
        elif litellm.LlmProviders.LM_STUDIO == provider:
            return litellm.LMStudioChatConfig()
        elif litellm.LlmProviders.GALADRIEL == provider:
            return litellm.GaladrielChatConfig()
        elif litellm.LlmProviders.REPLICATE == provider:
            return litellm.ReplicateConfig()
        elif litellm.LlmProviders.HUGGINGFACE == provider:
            return litellm.HuggingfaceConfig()
        elif litellm.LlmProviders.TOGETHER_AI == provider:
            return litellm.TogetherAIConfig()
        elif litellm.LlmProviders.OPENROUTER == provider:
            return litellm.OpenrouterConfig()
        elif litellm.LlmProviders.GEMINI == provider:
            return litellm.GoogleAIStudioGeminiConfig()
        elif (
            litellm.LlmProviders.AI21 == provider
            or litellm.LlmProviders.AI21_CHAT == provider
        ):
            return litellm.AI21ChatConfig()
        elif litellm.LlmProviders.AZURE == provider:
            if litellm.AzureOpenAIO1Config().is_o_series_model(model=model):
                return litellm.AzureOpenAIO1Config()
            return litellm.AzureOpenAIConfig()
        elif litellm.LlmProviders.AZURE_AI == provider:
            return litellm.AzureAIStudioConfig()
        elif litellm.LlmProviders.AZURE_TEXT == provider:
            return litellm.AzureOpenAITextConfig()
        elif litellm.LlmProviders.HOSTED_VLLM == provider:
            return litellm.HostedVLLMChatConfig()
        elif litellm.LlmProviders.NLP_CLOUD == provider:
            return litellm.NLPCloudConfig()
        elif litellm.LlmProviders.OOBABOOGA == provider:
            return litellm.OobaboogaConfig()
        elif litellm.LlmProviders.OLLAMA_CHAT == provider:
            return litellm.OllamaChatConfig()
        elif litellm.LlmProviders.DEEPINFRA == provider:
            return litellm.DeepInfraConfig()
        elif litellm.LlmProviders.PERPLEXITY == provider:
            return litellm.PerplexityChatConfig()
        elif (
            litellm.LlmProviders.MISTRAL == provider
            or litellm.LlmProviders.CODESTRAL == provider
        ):
            return litellm.MistralConfig()
        elif litellm.LlmProviders.NVIDIA_NIM == provider:
            return litellm.NvidiaNimConfig()
        elif litellm.LlmProviders.CEREBRAS == provider:
            return litellm.CerebrasConfig()
        elif litellm.LlmProviders.VOLCENGINE == provider:
            return litellm.VolcEngineConfig()
        elif litellm.LlmProviders.TEXT_COMPLETION_CODESTRAL == provider:
            return litellm.CodestralTextCompletionConfig()
        elif litellm.LlmProviders.SAMBANOVA == provider:
            return litellm.SambanovaConfig()
        elif litellm.LlmProviders.MARITALK == provider:
            return litellm.MaritalkConfig()
        elif litellm.LlmProviders.CLOUDFLARE == provider:
            return litellm.CloudflareChatConfig()
        elif litellm.LlmProviders.ANTHROPIC_TEXT == provider:
            return litellm.AnthropicTextConfig()
        elif litellm.LlmProviders.VLLM == provider:
            return litellm.VLLMConfig()
        elif litellm.LlmProviders.OLLAMA == provider:
            return litellm.OllamaConfig()
        elif litellm.LlmProviders.PREDIBASE == provider:
            return litellm.PredibaseConfig()
        elif litellm.LlmProviders.TRITON == provider:
            return litellm.TritonConfig()
        elif litellm.LlmProviders.PETALS == provider:
            return litellm.PetalsConfig()
        elif litellm.LlmProviders.BEDROCK == provider:
            base_model = litellm.AmazonConverseConfig()._get_base_model(model)
            bedrock_provider = litellm.BedrockLLM.get_bedrock_invoke_provider(model)
            if (
                base_model in litellm.bedrock_converse_models
                or "converse_like" in model
            ):
                return litellm.AmazonConverseConfig()
            elif bedrock_provider == "amazon":  # amazon titan llms
                return litellm.AmazonTitanConfig()
            elif (
                bedrock_provider == "meta" or bedrock_provider == "llama"
            ):  # amazon / meta llms
                return litellm.AmazonLlamaConfig()
            elif bedrock_provider == "ai21":  # ai21 llms
                return litellm.AmazonAI21Config()
            elif bedrock_provider == "cohere":  # cohere models on bedrock
                return litellm.AmazonCohereConfig()
            elif bedrock_provider == "mistral":  # mistral models on bedrock
                return litellm.AmazonMistralConfig()
        return litellm.OpenAIGPTConfig()

    @staticmethod
    def get_provider_embedding_config(
        model: str,
        provider: LlmProviders,
    ) -> BaseEmbeddingConfig:
        if litellm.LlmProviders.VOYAGE == provider:
            return litellm.VoyageEmbeddingConfig()
        elif litellm.LlmProviders.TRITON == provider:
            return litellm.TritonEmbeddingConfig()
        elif litellm.LlmProviders.WATSONX == provider:
            return litellm.IBMWatsonXEmbeddingConfig()
        raise ValueError(f"Provider {provider.value} does not support embedding config")

    @staticmethod
    def get_provider_rerank_config(
        model: str,
        provider: LlmProviders,
    ) -> BaseRerankConfig:
        if litellm.LlmProviders.COHERE == provider:
            return litellm.CohereRerankConfig()
        elif litellm.LlmProviders.AZURE_AI == provider:
            return litellm.AzureAIRerankConfig()
        elif litellm.LlmProviders.INFINITY == provider:
            return litellm.InfinityRerankConfig()
        return litellm.CohereRerankConfig()

    @staticmethod
    def get_provider_audio_transcription_config(
        model: str,
        provider: LlmProviders,
    ) -> Optional[BaseAudioTranscriptionConfig]:
        if litellm.LlmProviders.FIREWORKS_AI == provider:
            return litellm.FireworksAIAudioTranscriptionConfig()
        elif litellm.LlmProviders.DEEPGRAM == provider:
            return litellm.DeepgramAudioTranscriptionConfig()
        return None

    @staticmethod
    def get_provider_text_completion_config(
        model: str,
        provider: LlmProviders,
    ) -> BaseTextCompletionConfig:
        if LlmProviders.FIREWORKS_AI == provider:
            return litellm.FireworksAITextCompletionConfig()
        elif LlmProviders.TOGETHER_AI == provider:
            return litellm.TogetherAITextCompletionConfig()
        return litellm.OpenAITextCompletionConfig()

    @staticmethod
    def get_provider_model_info(
        model: Optional[str],
        provider: LlmProviders,
    ) -> Optional[BaseLLMModelInfo]:
        if LlmProviders.FIREWORKS_AI == provider:
            return litellm.FireworksAIConfig()
        elif LlmProviders.OPENAI == provider:
            return litellm.OpenAIGPTConfig()
        elif LlmProviders.LITELLM_PROXY == provider:
            return litellm.LiteLLMProxyChatConfig()
        elif LlmProviders.TOPAZ == provider:
            return litellm.TopazModelInfo()

        return None

    @staticmethod
    def get_provider_image_variation_config(
        model: str,
        provider: LlmProviders,
    ) -> Optional[BaseImageVariationConfig]:
        if LlmProviders.OPENAI == provider:
            return litellm.OpenAIImageVariationConfig()
        elif LlmProviders.TOPAZ == provider:
            return litellm.TopazImageVariationConfig()
        return None


def get_end_user_id_for_cost_tracking(
    litellm_params: dict,
    service_type: Literal["litellm_logging", "prometheus"] = "litellm_logging",
) -> Optional[str]:
    """
    Used for enforcing `disable_end_user_cost_tracking` param.

    service_type: "litellm_logging" or "prometheus" - used to allow prometheus only disable cost tracking.
    """
    _metadata = cast(dict, litellm_params.get("metadata", {}) or {})

    end_user_id = cast(
        Optional[str],
        litellm_params.get("user_api_key_end_user_id")
        or _metadata.get("user_api_key_end_user_id"),
    )
    if litellm.disable_end_user_cost_tracking:
        return None
    if (
        service_type == "prometheus"
        and litellm.disable_end_user_cost_tracking_prometheus_only
    ):
        return None
    return end_user_id


def is_prompt_caching_valid_prompt(
    model: str,
    messages: Optional[List[AllMessageValues]],
    tools: Optional[List[ChatCompletionToolParam]] = None,
    custom_llm_provider: Optional[str] = None,
) -> bool:
    """
    Returns true if the prompt is valid for prompt caching.

    OpenAI + Anthropic providers have a minimum token count of 1024 for prompt caching.
    """
    try:
        if messages is None and tools is None:
            return False
        if custom_llm_provider is not None and not model.startswith(
            custom_llm_provider
        ):
            model = custom_llm_provider + "/" + model
        token_count = token_counter(
            messages=messages,
            tools=tools,
            model=model,
            use_default_image_token_count=True,
        )
        return token_count >= 1024
    except Exception as e:
        verbose_logger.error(f"Error in is_prompt_caching_valid_prompt: {e}")
        return False


def extract_duration_from_srt_or_vtt(srt_or_vtt_content: str) -> Optional[float]:
    """
    Extracts the total duration (in seconds) from SRT or VTT content.

    Args:
        srt_or_vtt_content (str): The content of an SRT or VTT file as a string.

    Returns:
        Optional[float]: The total duration in seconds, or None if no timestamps are found.
    """
    # Regular expression to match timestamps in the format "hh:mm:ss,ms" or "hh:mm:ss.ms"
    timestamp_pattern = r"(\d{2}):(\d{2}):(\d{2})[.,](\d{3})"

    timestamps = re.findall(timestamp_pattern, srt_or_vtt_content)

    if not timestamps:
        return None

    # Convert timestamps to seconds and find the max (end time)
    durations = []
    for match in timestamps:
        hours, minutes, seconds, milliseconds = map(int, match)
        total_seconds = hours * 3600 + minutes * 60 + seconds + milliseconds / 1000.0
        durations.append(total_seconds)

    return max(durations) if durations else None


import httpx


def _add_path_to_api_base(api_base: str, ending_path: str) -> str:
    """
    Adds an ending path to an API base URL while preventing duplicate path segments.

    Args:
        api_base: Base URL string
        ending_path: Path to append to the base URL

    Returns:
        Modified URL string with proper path handling
    """
    original_url = httpx.URL(api_base)
    base_url = original_url.copy_with(params={})  # Removes query params
    base_path = original_url.path.rstrip("/")
    end_path = ending_path.lstrip("/")

    # Split paths into segments
    base_segments = [s for s in base_path.split("/") if s]
    end_segments = [s for s in end_path.split("/") if s]

    # Find overlapping segments from the end of base_path and start of ending_path
    final_segments = []
    for i in range(len(base_segments)):
        if base_segments[i:] == end_segments[: len(base_segments) - i]:
            final_segments = base_segments[:i] + end_segments
            break
    else:
        # No overlap found, just combine all segments
        final_segments = base_segments + end_segments

    # Construct the new path
    modified_path = "/" + "/".join(final_segments)
    modified_url = base_url.copy_with(path=modified_path)

    # Re-add the original query parameters
    return str(modified_url.copy_with(params=original_url.params))


def get_non_default_completion_params(kwargs: dict) -> dict:
    openai_params = litellm.OPENAI_CHAT_COMPLETION_PARAMS
    default_params = openai_params + all_litellm_params
    non_default_params = {
        k: v for k, v in kwargs.items() if k not in default_params
    }  # model-specific params - pass them straight to the model/provider
    return non_default_params


def add_openai_metadata(metadata: dict) -> dict:
    """
    Add metadata to openai optional parameters, excluding hidden params

    Args:
        params (dict): Dictionary of API parameters
        metadata (dict, optional): Metadata to include in the request

    Returns:
        dict: Updated parameters dictionary with visible metadata only
    """
    if metadata is None:
        return None
    # Only include non-hidden parameters
    visible_metadata = {k: v for k, v in metadata.items() if k != "hidden_params"}
    return visible_metadata.copy()