Raju2024's picture
Upload 1072 files
e3278e4 verified
raw
history blame
7.1 kB
import json
from typing import Any, Coroutine, Dict, Optional, Union
import httpx
import litellm
from litellm.llms.custom_httpx.http_handler import (
_get_httpx_client,
get_async_httpx_client,
)
from litellm.llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import VertexLLM
from litellm.types.llms.openai import Batch, CreateBatchRequest
from litellm.types.llms.vertex_ai import VertexAIBatchPredictionJob
from .transformation import VertexAIBatchTransformation
class VertexAIBatchPrediction(VertexLLM):
def __init__(self, gcs_bucket_name: str, *args, **kwargs):
super().__init__(*args, **kwargs)
self.gcs_bucket_name = gcs_bucket_name
def create_batch(
self,
_is_async: bool,
create_batch_data: CreateBatchRequest,
api_base: Optional[str],
vertex_credentials: Optional[str],
vertex_project: Optional[str],
vertex_location: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
) -> Union[Batch, Coroutine[Any, Any, Batch]]:
sync_handler = _get_httpx_client()
access_token, project_id = self._ensure_access_token(
credentials=vertex_credentials,
project_id=vertex_project,
custom_llm_provider="vertex_ai",
)
default_api_base = self.create_vertex_url(
vertex_location=vertex_location or "us-central1",
vertex_project=vertex_project or project_id,
)
if len(default_api_base.split(":")) > 1:
endpoint = default_api_base.split(":")[-1]
else:
endpoint = ""
_, api_base = self._check_custom_proxy(
api_base=api_base,
custom_llm_provider="vertex_ai",
gemini_api_key=None,
endpoint=endpoint,
stream=None,
auth_header=None,
url=default_api_base,
)
headers = {
"Content-Type": "application/json; charset=utf-8",
"Authorization": f"Bearer {access_token}",
}
vertex_batch_request: VertexAIBatchPredictionJob = (
VertexAIBatchTransformation.transform_openai_batch_request_to_vertex_ai_batch_request(
request=create_batch_data
)
)
if _is_async is True:
return self._async_create_batch(
vertex_batch_request=vertex_batch_request,
api_base=api_base,
headers=headers,
)
response = sync_handler.post(
url=api_base,
headers=headers,
data=json.dumps(vertex_batch_request),
)
if response.status_code != 200:
raise Exception(f"Error: {response.status_code} {response.text}")
_json_response = response.json()
vertex_batch_response = VertexAIBatchTransformation.transform_vertex_ai_batch_response_to_openai_batch_response(
response=_json_response
)
return vertex_batch_response
async def _async_create_batch(
self,
vertex_batch_request: VertexAIBatchPredictionJob,
api_base: str,
headers: Dict[str, str],
) -> Batch:
client = get_async_httpx_client(
llm_provider=litellm.LlmProviders.VERTEX_AI,
)
response = await client.post(
url=api_base,
headers=headers,
data=json.dumps(vertex_batch_request),
)
if response.status_code != 200:
raise Exception(f"Error: {response.status_code} {response.text}")
_json_response = response.json()
vertex_batch_response = VertexAIBatchTransformation.transform_vertex_ai_batch_response_to_openai_batch_response(
response=_json_response
)
return vertex_batch_response
def create_vertex_url(
self,
vertex_location: str,
vertex_project: str,
) -> str:
"""Return the base url for the vertex garden models"""
# POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/batchPredictionJobs
return f"https://{vertex_location}-aiplatform.googleapis.com/v1/projects/{vertex_project}/locations/{vertex_location}/batchPredictionJobs"
def retrieve_batch(
self,
_is_async: bool,
batch_id: str,
api_base: Optional[str],
vertex_credentials: Optional[str],
vertex_project: Optional[str],
vertex_location: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
) -> Union[Batch, Coroutine[Any, Any, Batch]]:
sync_handler = _get_httpx_client()
access_token, project_id = self._ensure_access_token(
credentials=vertex_credentials,
project_id=vertex_project,
custom_llm_provider="vertex_ai",
)
default_api_base = self.create_vertex_url(
vertex_location=vertex_location or "us-central1",
vertex_project=vertex_project or project_id,
)
# Append batch_id to the URL
default_api_base = f"{default_api_base}/{batch_id}"
if len(default_api_base.split(":")) > 1:
endpoint = default_api_base.split(":")[-1]
else:
endpoint = ""
_, api_base = self._check_custom_proxy(
api_base=api_base,
custom_llm_provider="vertex_ai",
gemini_api_key=None,
endpoint=endpoint,
stream=None,
auth_header=None,
url=default_api_base,
)
headers = {
"Content-Type": "application/json; charset=utf-8",
"Authorization": f"Bearer {access_token}",
}
if _is_async is True:
return self._async_retrieve_batch(
api_base=api_base,
headers=headers,
)
response = sync_handler.get(
url=api_base,
headers=headers,
)
if response.status_code != 200:
raise Exception(f"Error: {response.status_code} {response.text}")
_json_response = response.json()
vertex_batch_response = VertexAIBatchTransformation.transform_vertex_ai_batch_response_to_openai_batch_response(
response=_json_response
)
return vertex_batch_response
async def _async_retrieve_batch(
self,
api_base: str,
headers: Dict[str, str],
) -> Batch:
client = get_async_httpx_client(
llm_provider=litellm.LlmProviders.VERTEX_AI,
)
response = await client.get(
url=api_base,
headers=headers,
)
if response.status_code != 200:
raise Exception(f"Error: {response.status_code} {response.text}")
_json_response = response.json()
vertex_batch_response = VertexAIBatchTransformation.transform_vertex_ai_batch_response_to_openai_batch_response(
response=_json_response
)
return vertex_batch_response