File size: 7,104 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import json
from typing import Any, Coroutine, Dict, Optional, Union

import httpx

import litellm
from litellm.llms.custom_httpx.http_handler import (
    _get_httpx_client,
    get_async_httpx_client,
)
from litellm.llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import VertexLLM
from litellm.types.llms.openai import Batch, CreateBatchRequest
from litellm.types.llms.vertex_ai import VertexAIBatchPredictionJob

from .transformation import VertexAIBatchTransformation


class VertexAIBatchPrediction(VertexLLM):
    def __init__(self, gcs_bucket_name: str, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.gcs_bucket_name = gcs_bucket_name

    def create_batch(
        self,
        _is_async: bool,
        create_batch_data: CreateBatchRequest,
        api_base: Optional[str],
        vertex_credentials: Optional[str],
        vertex_project: Optional[str],
        vertex_location: Optional[str],
        timeout: Union[float, httpx.Timeout],
        max_retries: Optional[int],
    ) -> Union[Batch, Coroutine[Any, Any, Batch]]:

        sync_handler = _get_httpx_client()

        access_token, project_id = self._ensure_access_token(
            credentials=vertex_credentials,
            project_id=vertex_project,
            custom_llm_provider="vertex_ai",
        )

        default_api_base = self.create_vertex_url(
            vertex_location=vertex_location or "us-central1",
            vertex_project=vertex_project or project_id,
        )

        if len(default_api_base.split(":")) > 1:
            endpoint = default_api_base.split(":")[-1]
        else:
            endpoint = ""

        _, api_base = self._check_custom_proxy(
            api_base=api_base,
            custom_llm_provider="vertex_ai",
            gemini_api_key=None,
            endpoint=endpoint,
            stream=None,
            auth_header=None,
            url=default_api_base,
        )

        headers = {
            "Content-Type": "application/json; charset=utf-8",
            "Authorization": f"Bearer {access_token}",
        }

        vertex_batch_request: VertexAIBatchPredictionJob = (
            VertexAIBatchTransformation.transform_openai_batch_request_to_vertex_ai_batch_request(
                request=create_batch_data
            )
        )

        if _is_async is True:
            return self._async_create_batch(
                vertex_batch_request=vertex_batch_request,
                api_base=api_base,
                headers=headers,
            )

        response = sync_handler.post(
            url=api_base,
            headers=headers,
            data=json.dumps(vertex_batch_request),
        )

        if response.status_code != 200:
            raise Exception(f"Error: {response.status_code} {response.text}")

        _json_response = response.json()
        vertex_batch_response = VertexAIBatchTransformation.transform_vertex_ai_batch_response_to_openai_batch_response(
            response=_json_response
        )
        return vertex_batch_response

    async def _async_create_batch(
        self,
        vertex_batch_request: VertexAIBatchPredictionJob,
        api_base: str,
        headers: Dict[str, str],
    ) -> Batch:
        client = get_async_httpx_client(
            llm_provider=litellm.LlmProviders.VERTEX_AI,
        )
        response = await client.post(
            url=api_base,
            headers=headers,
            data=json.dumps(vertex_batch_request),
        )
        if response.status_code != 200:
            raise Exception(f"Error: {response.status_code} {response.text}")

        _json_response = response.json()
        vertex_batch_response = VertexAIBatchTransformation.transform_vertex_ai_batch_response_to_openai_batch_response(
            response=_json_response
        )
        return vertex_batch_response

    def create_vertex_url(
        self,
        vertex_location: str,
        vertex_project: str,
    ) -> str:
        """Return the base url for the vertex garden models"""
        #  POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/batchPredictionJobs
        return f"https://{vertex_location}-aiplatform.googleapis.com/v1/projects/{vertex_project}/locations/{vertex_location}/batchPredictionJobs"

    def retrieve_batch(
        self,
        _is_async: bool,
        batch_id: str,
        api_base: Optional[str],
        vertex_credentials: Optional[str],
        vertex_project: Optional[str],
        vertex_location: Optional[str],
        timeout: Union[float, httpx.Timeout],
        max_retries: Optional[int],
    ) -> Union[Batch, Coroutine[Any, Any, Batch]]:
        sync_handler = _get_httpx_client()

        access_token, project_id = self._ensure_access_token(
            credentials=vertex_credentials,
            project_id=vertex_project,
            custom_llm_provider="vertex_ai",
        )

        default_api_base = self.create_vertex_url(
            vertex_location=vertex_location or "us-central1",
            vertex_project=vertex_project or project_id,
        )

        # Append batch_id to the URL
        default_api_base = f"{default_api_base}/{batch_id}"

        if len(default_api_base.split(":")) > 1:
            endpoint = default_api_base.split(":")[-1]
        else:
            endpoint = ""

        _, api_base = self._check_custom_proxy(
            api_base=api_base,
            custom_llm_provider="vertex_ai",
            gemini_api_key=None,
            endpoint=endpoint,
            stream=None,
            auth_header=None,
            url=default_api_base,
        )

        headers = {
            "Content-Type": "application/json; charset=utf-8",
            "Authorization": f"Bearer {access_token}",
        }

        if _is_async is True:
            return self._async_retrieve_batch(
                api_base=api_base,
                headers=headers,
            )

        response = sync_handler.get(
            url=api_base,
            headers=headers,
        )

        if response.status_code != 200:
            raise Exception(f"Error: {response.status_code} {response.text}")

        _json_response = response.json()
        vertex_batch_response = VertexAIBatchTransformation.transform_vertex_ai_batch_response_to_openai_batch_response(
            response=_json_response
        )
        return vertex_batch_response

    async def _async_retrieve_batch(
        self,
        api_base: str,
        headers: Dict[str, str],
    ) -> Batch:
        client = get_async_httpx_client(
            llm_provider=litellm.LlmProviders.VERTEX_AI,
        )
        response = await client.get(
            url=api_base,
            headers=headers,
        )
        if response.status_code != 200:
            raise Exception(f"Error: {response.status_code} {response.text}")

        _json_response = response.json()
        vertex_batch_response = VertexAIBatchTransformation.transform_vertex_ai_batch_response_to_openai_batch_response(
            response=_json_response
        )
        return vertex_batch_response