Raju2024's picture
Upload 1072 files
e3278e4 verified
raw
history blame
11.9 kB
import json
from typing import Callable, List, Optional, Union
from openai import AsyncOpenAI, OpenAI
import litellm
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.litellm_core_utils.streaming_handler import CustomStreamWrapper
from litellm.llms.base import BaseLLM
from litellm.types.llms.openai import AllMessageValues, OpenAITextCompletionUserMessage
from litellm.types.utils import LlmProviders, ModelResponse, TextCompletionResponse
from litellm.utils import ProviderConfigManager
from ..common_utils import OpenAIError
from .transformation import OpenAITextCompletionConfig
class OpenAITextCompletion(BaseLLM):
openai_text_completion_global_config = OpenAITextCompletionConfig()
def __init__(self) -> None:
super().__init__()
def validate_environment(self, api_key):
headers = {
"content-type": "application/json",
}
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
return headers
def completion(
self,
model_response: ModelResponse,
api_key: str,
model: str,
messages: Union[List[AllMessageValues], List[OpenAITextCompletionUserMessage]],
timeout: float,
custom_llm_provider: str,
logging_obj: LiteLLMLoggingObj,
optional_params: dict,
print_verbose: Optional[Callable] = None,
api_base: Optional[str] = None,
acompletion: bool = False,
litellm_params=None,
logger_fn=None,
client=None,
organization: Optional[str] = None,
headers: Optional[dict] = None,
):
try:
if headers is None:
headers = self.validate_environment(api_key=api_key)
if model is None or messages is None:
raise OpenAIError(status_code=422, message="Missing model or messages")
# don't send max retries to the api, if set
provider_config = ProviderConfigManager.get_provider_text_completion_config(
model=model,
provider=LlmProviders(custom_llm_provider),
)
data = provider_config.transform_text_completion_request(
model=model,
messages=messages,
optional_params=optional_params,
headers=headers,
)
max_retries = data.pop("max_retries", 2)
## LOGGING
logging_obj.pre_call(
input=messages,
api_key=api_key,
additional_args={
"headers": headers,
"api_base": api_base,
"complete_input_dict": data,
},
)
if acompletion is True:
if optional_params.get("stream", False):
return self.async_streaming(
logging_obj=logging_obj,
api_base=api_base,
api_key=api_key,
data=data,
headers=headers,
model_response=model_response,
model=model,
timeout=timeout,
max_retries=max_retries,
client=client,
organization=organization,
)
else:
return self.acompletion(api_base=api_base, data=data, headers=headers, model_response=model_response, api_key=api_key, logging_obj=logging_obj, model=model, timeout=timeout, max_retries=max_retries, organization=organization, client=client) # type: ignore
elif optional_params.get("stream", False):
return self.streaming(
logging_obj=logging_obj,
api_base=api_base,
api_key=api_key,
data=data,
headers=headers,
model_response=model_response,
model=model,
timeout=timeout,
max_retries=max_retries, # type: ignore
client=client,
organization=organization,
)
else:
if client is None:
openai_client = OpenAI(
api_key=api_key,
base_url=api_base,
http_client=litellm.client_session,
timeout=timeout,
max_retries=max_retries, # type: ignore
organization=organization,
)
else:
openai_client = client
raw_response = openai_client.completions.with_raw_response.create(**data) # type: ignore
response = raw_response.parse()
response_json = response.model_dump()
## LOGGING
logging_obj.post_call(
api_key=api_key,
original_response=response_json,
additional_args={
"headers": headers,
"api_base": api_base,
},
)
## RESPONSE OBJECT
return TextCompletionResponse(**response_json)
except Exception as e:
status_code = getattr(e, "status_code", 500)
error_headers = getattr(e, "headers", None)
error_text = getattr(e, "text", str(e))
error_response = getattr(e, "response", None)
if error_headers is None and error_response:
error_headers = getattr(error_response, "headers", None)
raise OpenAIError(
status_code=status_code, message=error_text, headers=error_headers
)
async def acompletion(
self,
logging_obj,
api_base: str,
data: dict,
headers: dict,
model_response: ModelResponse,
api_key: str,
model: str,
timeout: float,
max_retries: int,
organization: Optional[str] = None,
client=None,
):
try:
if client is None:
openai_aclient = AsyncOpenAI(
api_key=api_key,
base_url=api_base,
http_client=litellm.aclient_session,
timeout=timeout,
max_retries=max_retries,
organization=organization,
)
else:
openai_aclient = client
raw_response = await openai_aclient.completions.with_raw_response.create(
**data
)
response = raw_response.parse()
response_json = response.model_dump()
## LOGGING
logging_obj.post_call(
api_key=api_key,
original_response=response,
additional_args={
"headers": headers,
"api_base": api_base,
},
)
## RESPONSE OBJECT
response_obj = TextCompletionResponse(**response_json)
response_obj._hidden_params.original_response = json.dumps(response_json)
return response_obj
except Exception as e:
status_code = getattr(e, "status_code", 500)
error_headers = getattr(e, "headers", None)
error_text = getattr(e, "text", str(e))
error_response = getattr(e, "response", None)
if error_headers is None and error_response:
error_headers = getattr(error_response, "headers", None)
raise OpenAIError(
status_code=status_code, message=error_text, headers=error_headers
)
def streaming(
self,
logging_obj,
api_key: str,
data: dict,
headers: dict,
model_response: ModelResponse,
model: str,
timeout: float,
api_base: Optional[str] = None,
max_retries=None,
client=None,
organization=None,
):
if client is None:
openai_client = OpenAI(
api_key=api_key,
base_url=api_base,
http_client=litellm.client_session,
timeout=timeout,
max_retries=max_retries, # type: ignore
organization=organization,
)
else:
openai_client = client
try:
raw_response = openai_client.completions.with_raw_response.create(**data)
response = raw_response.parse()
except Exception as e:
status_code = getattr(e, "status_code", 500)
error_headers = getattr(e, "headers", None)
error_text = getattr(e, "text", str(e))
error_response = getattr(e, "response", None)
if error_headers is None and error_response:
error_headers = getattr(error_response, "headers", None)
raise OpenAIError(
status_code=status_code, message=error_text, headers=error_headers
)
streamwrapper = CustomStreamWrapper(
completion_stream=response,
model=model,
custom_llm_provider="text-completion-openai",
logging_obj=logging_obj,
stream_options=data.get("stream_options", None),
)
try:
for chunk in streamwrapper:
yield chunk
except Exception as e:
status_code = getattr(e, "status_code", 500)
error_headers = getattr(e, "headers", None)
error_text = getattr(e, "text", str(e))
error_response = getattr(e, "response", None)
if error_headers is None and error_response:
error_headers = getattr(error_response, "headers", None)
raise OpenAIError(
status_code=status_code, message=error_text, headers=error_headers
)
async def async_streaming(
self,
logging_obj,
api_key: str,
data: dict,
headers: dict,
model_response: ModelResponse,
model: str,
timeout: float,
max_retries: int,
api_base: Optional[str] = None,
client=None,
organization=None,
):
if client is None:
openai_client = AsyncOpenAI(
api_key=api_key,
base_url=api_base,
http_client=litellm.aclient_session,
timeout=timeout,
max_retries=max_retries,
organization=organization,
)
else:
openai_client = client
raw_response = await openai_client.completions.with_raw_response.create(**data)
response = raw_response.parse()
streamwrapper = CustomStreamWrapper(
completion_stream=response,
model=model,
custom_llm_provider="text-completion-openai",
logging_obj=logging_obj,
stream_options=data.get("stream_options", None),
)
try:
async for transformed_chunk in streamwrapper:
yield transformed_chunk
except Exception as e:
status_code = getattr(e, "status_code", 500)
error_headers = getattr(e, "headers", None)
error_text = getattr(e, "text", str(e))
error_response = getattr(e, "response", None)
if error_headers is None and error_response:
error_headers = getattr(error_response, "headers", None)
raise OpenAIError(
status_code=status_code, message=error_text, headers=error_headers
)