File size: 11,854 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import json
from typing import Callable, List, Optional, Union

from openai import AsyncOpenAI, OpenAI

import litellm
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.litellm_core_utils.streaming_handler import CustomStreamWrapper
from litellm.llms.base import BaseLLM
from litellm.types.llms.openai import AllMessageValues, OpenAITextCompletionUserMessage
from litellm.types.utils import LlmProviders, ModelResponse, TextCompletionResponse
from litellm.utils import ProviderConfigManager

from ..common_utils import OpenAIError
from .transformation import OpenAITextCompletionConfig


class OpenAITextCompletion(BaseLLM):
    openai_text_completion_global_config = OpenAITextCompletionConfig()

    def __init__(self) -> None:
        super().__init__()

    def validate_environment(self, api_key):
        headers = {
            "content-type": "application/json",
        }
        if api_key:
            headers["Authorization"] = f"Bearer {api_key}"
        return headers

    def completion(
        self,
        model_response: ModelResponse,
        api_key: str,
        model: str,
        messages: Union[List[AllMessageValues], List[OpenAITextCompletionUserMessage]],
        timeout: float,
        custom_llm_provider: str,
        logging_obj: LiteLLMLoggingObj,
        optional_params: dict,
        print_verbose: Optional[Callable] = None,
        api_base: Optional[str] = None,
        acompletion: bool = False,
        litellm_params=None,
        logger_fn=None,
        client=None,
        organization: Optional[str] = None,
        headers: Optional[dict] = None,
    ):
        try:
            if headers is None:
                headers = self.validate_environment(api_key=api_key)
            if model is None or messages is None:
                raise OpenAIError(status_code=422, message="Missing model or messages")

            # don't send max retries to the api, if set

            provider_config = ProviderConfigManager.get_provider_text_completion_config(
                model=model,
                provider=LlmProviders(custom_llm_provider),
            )

            data = provider_config.transform_text_completion_request(
                model=model,
                messages=messages,
                optional_params=optional_params,
                headers=headers,
            )
            max_retries = data.pop("max_retries", 2)
            ## LOGGING
            logging_obj.pre_call(
                input=messages,
                api_key=api_key,
                additional_args={
                    "headers": headers,
                    "api_base": api_base,
                    "complete_input_dict": data,
                },
            )
            if acompletion is True:
                if optional_params.get("stream", False):
                    return self.async_streaming(
                        logging_obj=logging_obj,
                        api_base=api_base,
                        api_key=api_key,
                        data=data,
                        headers=headers,
                        model_response=model_response,
                        model=model,
                        timeout=timeout,
                        max_retries=max_retries,
                        client=client,
                        organization=organization,
                    )
                else:
                    return self.acompletion(api_base=api_base, data=data, headers=headers, model_response=model_response, api_key=api_key, logging_obj=logging_obj, model=model, timeout=timeout, max_retries=max_retries, organization=organization, client=client)  # type: ignore
            elif optional_params.get("stream", False):
                return self.streaming(
                    logging_obj=logging_obj,
                    api_base=api_base,
                    api_key=api_key,
                    data=data,
                    headers=headers,
                    model_response=model_response,
                    model=model,
                    timeout=timeout,
                    max_retries=max_retries,  # type: ignore
                    client=client,
                    organization=organization,
                )
            else:
                if client is None:
                    openai_client = OpenAI(
                        api_key=api_key,
                        base_url=api_base,
                        http_client=litellm.client_session,
                        timeout=timeout,
                        max_retries=max_retries,  # type: ignore
                        organization=organization,
                    )
                else:
                    openai_client = client

                raw_response = openai_client.completions.with_raw_response.create(**data)  # type: ignore
                response = raw_response.parse()
                response_json = response.model_dump()

                ## LOGGING
                logging_obj.post_call(
                    api_key=api_key,
                    original_response=response_json,
                    additional_args={
                        "headers": headers,
                        "api_base": api_base,
                    },
                )

                ## RESPONSE OBJECT
                return TextCompletionResponse(**response_json)
        except Exception as e:
            status_code = getattr(e, "status_code", 500)
            error_headers = getattr(e, "headers", None)
            error_text = getattr(e, "text", str(e))
            error_response = getattr(e, "response", None)
            if error_headers is None and error_response:
                error_headers = getattr(error_response, "headers", None)
            raise OpenAIError(
                status_code=status_code, message=error_text, headers=error_headers
            )

    async def acompletion(
        self,
        logging_obj,
        api_base: str,
        data: dict,
        headers: dict,
        model_response: ModelResponse,
        api_key: str,
        model: str,
        timeout: float,
        max_retries: int,
        organization: Optional[str] = None,
        client=None,
    ):
        try:
            if client is None:
                openai_aclient = AsyncOpenAI(
                    api_key=api_key,
                    base_url=api_base,
                    http_client=litellm.aclient_session,
                    timeout=timeout,
                    max_retries=max_retries,
                    organization=organization,
                )
            else:
                openai_aclient = client

            raw_response = await openai_aclient.completions.with_raw_response.create(
                **data
            )
            response = raw_response.parse()
            response_json = response.model_dump()

            ## LOGGING
            logging_obj.post_call(
                api_key=api_key,
                original_response=response,
                additional_args={
                    "headers": headers,
                    "api_base": api_base,
                },
            )
            ## RESPONSE OBJECT
            response_obj = TextCompletionResponse(**response_json)
            response_obj._hidden_params.original_response = json.dumps(response_json)
            return response_obj
        except Exception as e:
            status_code = getattr(e, "status_code", 500)
            error_headers = getattr(e, "headers", None)
            error_text = getattr(e, "text", str(e))
            error_response = getattr(e, "response", None)
            if error_headers is None and error_response:
                error_headers = getattr(error_response, "headers", None)
            raise OpenAIError(
                status_code=status_code, message=error_text, headers=error_headers
            )

    def streaming(
        self,
        logging_obj,
        api_key: str,
        data: dict,
        headers: dict,
        model_response: ModelResponse,
        model: str,
        timeout: float,
        api_base: Optional[str] = None,
        max_retries=None,
        client=None,
        organization=None,
    ):

        if client is None:
            openai_client = OpenAI(
                api_key=api_key,
                base_url=api_base,
                http_client=litellm.client_session,
                timeout=timeout,
                max_retries=max_retries,  # type: ignore
                organization=organization,
            )
        else:
            openai_client = client

        try:
            raw_response = openai_client.completions.with_raw_response.create(**data)
            response = raw_response.parse()
        except Exception as e:
            status_code = getattr(e, "status_code", 500)
            error_headers = getattr(e, "headers", None)
            error_text = getattr(e, "text", str(e))
            error_response = getattr(e, "response", None)
            if error_headers is None and error_response:
                error_headers = getattr(error_response, "headers", None)
            raise OpenAIError(
                status_code=status_code, message=error_text, headers=error_headers
            )
        streamwrapper = CustomStreamWrapper(
            completion_stream=response,
            model=model,
            custom_llm_provider="text-completion-openai",
            logging_obj=logging_obj,
            stream_options=data.get("stream_options", None),
        )

        try:
            for chunk in streamwrapper:
                yield chunk
        except Exception as e:
            status_code = getattr(e, "status_code", 500)
            error_headers = getattr(e, "headers", None)
            error_text = getattr(e, "text", str(e))
            error_response = getattr(e, "response", None)
            if error_headers is None and error_response:
                error_headers = getattr(error_response, "headers", None)
            raise OpenAIError(
                status_code=status_code, message=error_text, headers=error_headers
            )

    async def async_streaming(
        self,
        logging_obj,
        api_key: str,
        data: dict,
        headers: dict,
        model_response: ModelResponse,
        model: str,
        timeout: float,
        max_retries: int,
        api_base: Optional[str] = None,
        client=None,
        organization=None,
    ):
        if client is None:
            openai_client = AsyncOpenAI(
                api_key=api_key,
                base_url=api_base,
                http_client=litellm.aclient_session,
                timeout=timeout,
                max_retries=max_retries,
                organization=organization,
            )
        else:
            openai_client = client

        raw_response = await openai_client.completions.with_raw_response.create(**data)
        response = raw_response.parse()
        streamwrapper = CustomStreamWrapper(
            completion_stream=response,
            model=model,
            custom_llm_provider="text-completion-openai",
            logging_obj=logging_obj,
            stream_options=data.get("stream_options", None),
        )

        try:
            async for transformed_chunk in streamwrapper:
                yield transformed_chunk
        except Exception as e:
            status_code = getattr(e, "status_code", 500)
            error_headers = getattr(e, "headers", None)
            error_text = getattr(e, "text", str(e))
            error_response = getattr(e, "response", None)
            if error_headers is None and error_response:
                error_headers = getattr(error_response, "headers", None)
            raise OpenAIError(
                status_code=status_code, message=error_text, headers=error_headers
            )