|
""" |
|
Transformation logic from OpenAI /v1/chat/completion format to Mistral's /chat/completion format. |
|
|
|
Why separate file? Make it easy to see how transformation works |
|
|
|
Docs - https://docs.mistral.ai/api/ |
|
""" |
|
|
|
from typing import List, Literal, Optional, Tuple, Union |
|
|
|
from litellm.litellm_core_utils.prompt_templates.common_utils import ( |
|
handle_messages_with_content_list_to_str_conversion, |
|
strip_none_values_from_message, |
|
) |
|
from litellm.llms.openai.chat.gpt_transformation import OpenAIGPTConfig |
|
from litellm.secret_managers.main import get_secret_str |
|
from litellm.types.llms.mistral import MistralToolCallMessage |
|
from litellm.types.llms.openai import AllMessageValues |
|
|
|
|
|
class MistralConfig(OpenAIGPTConfig): |
|
""" |
|
Reference: https://docs.mistral.ai/api/ |
|
|
|
The class `MistralConfig` provides configuration for the Mistral's Chat API interface. Below are the parameters: |
|
|
|
- `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2. API Default - 0.7. |
|
|
|
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling. API Default - 1. |
|
|
|
- `max_tokens` (integer or null): This optional parameter helps to set the maximum number of tokens to generate in the chat completion. API Default - null. |
|
|
|
- `tools` (list or null): A list of available tools for the model. Use this to specify functions for which the model can generate JSON inputs. |
|
|
|
- `tool_choice` (string - 'auto'/'any'/'none' or null): Specifies if/how functions are called. If set to none the model won't call a function and will generate a message instead. If set to auto the model can choose to either generate a message or call a function. If set to any the model is forced to call a function. Default - 'auto'. |
|
|
|
- `stop` (string or array of strings): Stop generation if this token is detected. Or if one of these tokens is detected when providing an array |
|
|
|
- `random_seed` (integer or null): The seed to use for random sampling. If set, different calls will generate deterministic results. |
|
|
|
- `safe_prompt` (boolean): Whether to inject a safety prompt before all conversations. API Default - 'false'. |
|
|
|
- `response_format` (object or null): An object specifying the format that the model must output. Setting to { "type": "json_object" } enables JSON mode, which guarantees the message the model generates is in JSON. When using JSON mode you MUST also instruct the model to produce JSON yourself with a system or a user message. |
|
""" |
|
|
|
temperature: Optional[int] = None |
|
top_p: Optional[int] = None |
|
max_tokens: Optional[int] = None |
|
tools: Optional[list] = None |
|
tool_choice: Optional[Literal["auto", "any", "none"]] = None |
|
random_seed: Optional[int] = None |
|
safe_prompt: Optional[bool] = None |
|
response_format: Optional[dict] = None |
|
stop: Optional[Union[str, list]] = None |
|
|
|
def __init__( |
|
self, |
|
temperature: Optional[int] = None, |
|
top_p: Optional[int] = None, |
|
max_tokens: Optional[int] = None, |
|
tools: Optional[list] = None, |
|
tool_choice: Optional[Literal["auto", "any", "none"]] = None, |
|
random_seed: Optional[int] = None, |
|
safe_prompt: Optional[bool] = None, |
|
response_format: Optional[dict] = None, |
|
stop: Optional[Union[str, list]] = None, |
|
) -> None: |
|
locals_ = locals().copy() |
|
for key, value in locals_.items(): |
|
if key != "self" and value is not None: |
|
setattr(self.__class__, key, value) |
|
|
|
@classmethod |
|
def get_config(cls): |
|
return super().get_config() |
|
|
|
def get_supported_openai_params(self, model: str) -> List[str]: |
|
return [ |
|
"stream", |
|
"temperature", |
|
"top_p", |
|
"max_tokens", |
|
"tools", |
|
"tool_choice", |
|
"seed", |
|
"stop", |
|
"response_format", |
|
] |
|
|
|
def _map_tool_choice(self, tool_choice: str) -> str: |
|
if tool_choice == "auto" or tool_choice == "none": |
|
return tool_choice |
|
elif tool_choice == "required": |
|
return "any" |
|
else: |
|
return "any" |
|
|
|
def map_openai_params( |
|
self, |
|
non_default_params: dict, |
|
optional_params: dict, |
|
model: str, |
|
drop_params: bool, |
|
) -> dict: |
|
for param, value in non_default_params.items(): |
|
if param == "max_tokens": |
|
optional_params["max_tokens"] = value |
|
if param == "tools": |
|
optional_params["tools"] = value |
|
if param == "stream" and value is True: |
|
optional_params["stream"] = value |
|
if param == "temperature": |
|
optional_params["temperature"] = value |
|
if param == "top_p": |
|
optional_params["top_p"] = value |
|
if param == "stop": |
|
optional_params["stop"] = value |
|
if param == "tool_choice" and isinstance(value, str): |
|
optional_params["tool_choice"] = self._map_tool_choice( |
|
tool_choice=value |
|
) |
|
if param == "seed": |
|
optional_params["extra_body"] = {"random_seed": value} |
|
if param == "response_format": |
|
optional_params["response_format"] = value |
|
return optional_params |
|
|
|
def _get_openai_compatible_provider_info( |
|
self, api_base: Optional[str], api_key: Optional[str] |
|
) -> Tuple[Optional[str], Optional[str]]: |
|
|
|
api_base = ( |
|
api_base |
|
or get_secret_str("MISTRAL_AZURE_API_BASE") |
|
or "https://api.mistral.ai/v1" |
|
) |
|
|
|
|
|
if api_base is not None and not api_base.endswith( |
|
"/v1" |
|
): |
|
api_base = api_base + "/v1" |
|
dynamic_api_key = ( |
|
api_key |
|
or get_secret_str("MISTRAL_AZURE_API_KEY") |
|
or get_secret_str("MISTRAL_API_KEY") |
|
) |
|
return api_base, dynamic_api_key |
|
|
|
def _transform_messages( |
|
self, messages: List[AllMessageValues], model: str |
|
) -> List[AllMessageValues]: |
|
""" |
|
- handles scenario where content is list and not string |
|
- content list is just text, and no images |
|
- if image passed in, then just return as is (user-intended) |
|
- if `name` is passed, then drop it for mistral API: https://github.com/BerriAI/litellm/issues/6696 |
|
|
|
Motivation: mistral api doesn't support content as a list |
|
""" |
|
|
|
for m in messages: |
|
_content_block = m.get("content") |
|
if _content_block and isinstance(_content_block, list): |
|
for c in _content_block: |
|
if c.get("type") == "image_url": |
|
return messages |
|
|
|
|
|
messages = handle_messages_with_content_list_to_str_conversion(messages) |
|
|
|
|
|
new_messages: List[AllMessageValues] = [] |
|
for m in messages: |
|
m = MistralConfig._handle_name_in_message(m) |
|
m = MistralConfig._handle_tool_call_message(m) |
|
m = strip_none_values_from_message(m) |
|
new_messages.append(m) |
|
|
|
return new_messages |
|
|
|
@classmethod |
|
def _handle_name_in_message(cls, message: AllMessageValues) -> AllMessageValues: |
|
""" |
|
Mistral API only supports `name` in tool messages |
|
|
|
If role == tool, then we keep `name` |
|
Otherwise, we drop `name` |
|
""" |
|
_name = message.get("name") |
|
if _name is not None and message["role"] != "tool": |
|
message.pop("name", None) |
|
|
|
return message |
|
|
|
@classmethod |
|
def _handle_tool_call_message(cls, message: AllMessageValues) -> AllMessageValues: |
|
""" |
|
Mistral API only supports tool_calls in Messages in `MistralToolCallMessage` spec |
|
""" |
|
_tool_calls = message.get("tool_calls") |
|
mistral_tool_calls: List[MistralToolCallMessage] = [] |
|
if _tool_calls is not None and isinstance(_tool_calls, list): |
|
for _tool in _tool_calls: |
|
_tool_call_message = MistralToolCallMessage( |
|
id=_tool.get("id"), |
|
type="function", |
|
function=_tool.get("function"), |
|
) |
|
mistral_tool_calls.append(_tool_call_message) |
|
message["tool_calls"] = mistral_tool_calls |
|
return message |
|
|