File size: 8,992 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
"""
Transformation logic from OpenAI /v1/chat/completion format to Mistral's /chat/completion format.

Why separate file? Make it easy to see how transformation works

Docs - https://docs.mistral.ai/api/
"""

from typing import List, Literal, Optional, Tuple, Union

from litellm.litellm_core_utils.prompt_templates.common_utils import (
    handle_messages_with_content_list_to_str_conversion,
    strip_none_values_from_message,
)
from litellm.llms.openai.chat.gpt_transformation import OpenAIGPTConfig
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.mistral import MistralToolCallMessage
from litellm.types.llms.openai import AllMessageValues


class MistralConfig(OpenAIGPTConfig):
    """
    Reference: https://docs.mistral.ai/api/

    The class `MistralConfig` provides configuration for the Mistral's Chat API interface. Below are the parameters:

    - `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2. API Default - 0.7.

    - `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling. API Default - 1.

    - `max_tokens` (integer or null): This optional parameter helps to set the maximum number of tokens to generate in the chat completion. API Default - null.

    - `tools` (list or null): A list of available tools for the model. Use this to specify functions for which the model can generate JSON inputs.

    - `tool_choice` (string - 'auto'/'any'/'none' or null): Specifies if/how functions are called. If set to none the model won't call a function and will generate a message instead. If set to auto the model can choose to either generate a message or call a function. If set to any the model is forced to call a function. Default - 'auto'.

    - `stop` (string or array of strings): Stop generation if this token is detected. Or if one of these tokens is detected when providing an array

    - `random_seed` (integer or null): The seed to use for random sampling. If set, different calls will generate deterministic results.

    - `safe_prompt` (boolean): Whether to inject a safety prompt before all conversations. API Default - 'false'.

    - `response_format` (object or null): An object specifying the format that the model must output. Setting to { "type": "json_object" } enables JSON mode, which guarantees the message the model generates is in JSON. When using JSON mode you MUST also instruct the model to produce JSON yourself with a system or a user message.
    """

    temperature: Optional[int] = None
    top_p: Optional[int] = None
    max_tokens: Optional[int] = None
    tools: Optional[list] = None
    tool_choice: Optional[Literal["auto", "any", "none"]] = None
    random_seed: Optional[int] = None
    safe_prompt: Optional[bool] = None
    response_format: Optional[dict] = None
    stop: Optional[Union[str, list]] = None

    def __init__(
        self,
        temperature: Optional[int] = None,
        top_p: Optional[int] = None,
        max_tokens: Optional[int] = None,
        tools: Optional[list] = None,
        tool_choice: Optional[Literal["auto", "any", "none"]] = None,
        random_seed: Optional[int] = None,
        safe_prompt: Optional[bool] = None,
        response_format: Optional[dict] = None,
        stop: Optional[Union[str, list]] = None,
    ) -> None:
        locals_ = locals().copy()
        for key, value in locals_.items():
            if key != "self" and value is not None:
                setattr(self.__class__, key, value)

    @classmethod
    def get_config(cls):
        return super().get_config()

    def get_supported_openai_params(self, model: str) -> List[str]:
        return [
            "stream",
            "temperature",
            "top_p",
            "max_tokens",
            "tools",
            "tool_choice",
            "seed",
            "stop",
            "response_format",
        ]

    def _map_tool_choice(self, tool_choice: str) -> str:
        if tool_choice == "auto" or tool_choice == "none":
            return tool_choice
        elif tool_choice == "required":
            return "any"
        else:  # openai 'tool_choice' object param not supported by Mistral API
            return "any"

    def map_openai_params(
        self,
        non_default_params: dict,
        optional_params: dict,
        model: str,
        drop_params: bool,
    ) -> dict:
        for param, value in non_default_params.items():
            if param == "max_tokens":
                optional_params["max_tokens"] = value
            if param == "tools":
                optional_params["tools"] = value
            if param == "stream" and value is True:
                optional_params["stream"] = value
            if param == "temperature":
                optional_params["temperature"] = value
            if param == "top_p":
                optional_params["top_p"] = value
            if param == "stop":
                optional_params["stop"] = value
            if param == "tool_choice" and isinstance(value, str):
                optional_params["tool_choice"] = self._map_tool_choice(
                    tool_choice=value
                )
            if param == "seed":
                optional_params["extra_body"] = {"random_seed": value}
            if param == "response_format":
                optional_params["response_format"] = value
        return optional_params

    def _get_openai_compatible_provider_info(
        self, api_base: Optional[str], api_key: Optional[str]
    ) -> Tuple[Optional[str], Optional[str]]:
        # mistral is openai compatible, we just need to set this to custom_openai and have the api_base be https://api.mistral.ai
        api_base = (
            api_base
            or get_secret_str("MISTRAL_AZURE_API_BASE")  # for Azure AI Mistral
            or "https://api.mistral.ai/v1"
        )  # type: ignore

        # if api_base does not end with /v1 we add it
        if api_base is not None and not api_base.endswith(
            "/v1"
        ):  # Mistral always needs a /v1 at the end
            api_base = api_base + "/v1"
        dynamic_api_key = (
            api_key
            or get_secret_str("MISTRAL_AZURE_API_KEY")  # for Azure AI Mistral
            or get_secret_str("MISTRAL_API_KEY")
        )
        return api_base, dynamic_api_key

    def _transform_messages(
        self, messages: List[AllMessageValues], model: str
    ) -> List[AllMessageValues]:
        """
        - handles scenario where content is list and not string
        - content list is just text, and no images
        - if image passed in, then just return as is (user-intended)
        - if `name` is passed, then drop it for mistral API: https://github.com/BerriAI/litellm/issues/6696

        Motivation: mistral api doesn't support content as a list
        """
        ## 1. If 'image_url' in content, then return as is
        for m in messages:
            _content_block = m.get("content")
            if _content_block and isinstance(_content_block, list):
                for c in _content_block:
                    if c.get("type") == "image_url":
                        return messages

        ## 2. If content is list, then convert to string
        messages = handle_messages_with_content_list_to_str_conversion(messages)

        ## 3. Handle name in message
        new_messages: List[AllMessageValues] = []
        for m in messages:
            m = MistralConfig._handle_name_in_message(m)
            m = MistralConfig._handle_tool_call_message(m)
            m = strip_none_values_from_message(m)  # prevents 'extra_forbidden' error
            new_messages.append(m)

        return new_messages

    @classmethod
    def _handle_name_in_message(cls, message: AllMessageValues) -> AllMessageValues:
        """
        Mistral API only supports `name` in tool messages

        If role == tool, then we keep `name`
        Otherwise, we drop `name`
        """
        _name = message.get("name")  # type: ignore
        if _name is not None and message["role"] != "tool":
            message.pop("name", None)  # type: ignore

        return message

    @classmethod
    def _handle_tool_call_message(cls, message: AllMessageValues) -> AllMessageValues:
        """
        Mistral API only supports tool_calls in Messages in `MistralToolCallMessage` spec
        """
        _tool_calls = message.get("tool_calls")
        mistral_tool_calls: List[MistralToolCallMessage] = []
        if _tool_calls is not None and isinstance(_tool_calls, list):
            for _tool in _tool_calls:
                _tool_call_message = MistralToolCallMessage(
                    id=_tool.get("id"),
                    type="function",
                    function=_tool.get("function"),  # type: ignore
                )
                mistral_tool_calls.append(_tool_call_message)
            message["tool_calls"] = mistral_tool_calls  # type: ignore
        return message