File size: 8,992 Bytes
e3278e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
"""
Transformation logic from OpenAI /v1/chat/completion format to Mistral's /chat/completion format.
Why separate file? Make it easy to see how transformation works
Docs - https://docs.mistral.ai/api/
"""
from typing import List, Literal, Optional, Tuple, Union
from litellm.litellm_core_utils.prompt_templates.common_utils import (
handle_messages_with_content_list_to_str_conversion,
strip_none_values_from_message,
)
from litellm.llms.openai.chat.gpt_transformation import OpenAIGPTConfig
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.mistral import MistralToolCallMessage
from litellm.types.llms.openai import AllMessageValues
class MistralConfig(OpenAIGPTConfig):
"""
Reference: https://docs.mistral.ai/api/
The class `MistralConfig` provides configuration for the Mistral's Chat API interface. Below are the parameters:
- `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2. API Default - 0.7.
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling. API Default - 1.
- `max_tokens` (integer or null): This optional parameter helps to set the maximum number of tokens to generate in the chat completion. API Default - null.
- `tools` (list or null): A list of available tools for the model. Use this to specify functions for which the model can generate JSON inputs.
- `tool_choice` (string - 'auto'/'any'/'none' or null): Specifies if/how functions are called. If set to none the model won't call a function and will generate a message instead. If set to auto the model can choose to either generate a message or call a function. If set to any the model is forced to call a function. Default - 'auto'.
- `stop` (string or array of strings): Stop generation if this token is detected. Or if one of these tokens is detected when providing an array
- `random_seed` (integer or null): The seed to use for random sampling. If set, different calls will generate deterministic results.
- `safe_prompt` (boolean): Whether to inject a safety prompt before all conversations. API Default - 'false'.
- `response_format` (object or null): An object specifying the format that the model must output. Setting to { "type": "json_object" } enables JSON mode, which guarantees the message the model generates is in JSON. When using JSON mode you MUST also instruct the model to produce JSON yourself with a system or a user message.
"""
temperature: Optional[int] = None
top_p: Optional[int] = None
max_tokens: Optional[int] = None
tools: Optional[list] = None
tool_choice: Optional[Literal["auto", "any", "none"]] = None
random_seed: Optional[int] = None
safe_prompt: Optional[bool] = None
response_format: Optional[dict] = None
stop: Optional[Union[str, list]] = None
def __init__(
self,
temperature: Optional[int] = None,
top_p: Optional[int] = None,
max_tokens: Optional[int] = None,
tools: Optional[list] = None,
tool_choice: Optional[Literal["auto", "any", "none"]] = None,
random_seed: Optional[int] = None,
safe_prompt: Optional[bool] = None,
response_format: Optional[dict] = None,
stop: Optional[Union[str, list]] = None,
) -> None:
locals_ = locals().copy()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return super().get_config()
def get_supported_openai_params(self, model: str) -> List[str]:
return [
"stream",
"temperature",
"top_p",
"max_tokens",
"tools",
"tool_choice",
"seed",
"stop",
"response_format",
]
def _map_tool_choice(self, tool_choice: str) -> str:
if tool_choice == "auto" or tool_choice == "none":
return tool_choice
elif tool_choice == "required":
return "any"
else: # openai 'tool_choice' object param not supported by Mistral API
return "any"
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
drop_params: bool,
) -> dict:
for param, value in non_default_params.items():
if param == "max_tokens":
optional_params["max_tokens"] = value
if param == "tools":
optional_params["tools"] = value
if param == "stream" and value is True:
optional_params["stream"] = value
if param == "temperature":
optional_params["temperature"] = value
if param == "top_p":
optional_params["top_p"] = value
if param == "stop":
optional_params["stop"] = value
if param == "tool_choice" and isinstance(value, str):
optional_params["tool_choice"] = self._map_tool_choice(
tool_choice=value
)
if param == "seed":
optional_params["extra_body"] = {"random_seed": value}
if param == "response_format":
optional_params["response_format"] = value
return optional_params
def _get_openai_compatible_provider_info(
self, api_base: Optional[str], api_key: Optional[str]
) -> Tuple[Optional[str], Optional[str]]:
# mistral is openai compatible, we just need to set this to custom_openai and have the api_base be https://api.mistral.ai
api_base = (
api_base
or get_secret_str("MISTRAL_AZURE_API_BASE") # for Azure AI Mistral
or "https://api.mistral.ai/v1"
) # type: ignore
# if api_base does not end with /v1 we add it
if api_base is not None and not api_base.endswith(
"/v1"
): # Mistral always needs a /v1 at the end
api_base = api_base + "/v1"
dynamic_api_key = (
api_key
or get_secret_str("MISTRAL_AZURE_API_KEY") # for Azure AI Mistral
or get_secret_str("MISTRAL_API_KEY")
)
return api_base, dynamic_api_key
def _transform_messages(
self, messages: List[AllMessageValues], model: str
) -> List[AllMessageValues]:
"""
- handles scenario where content is list and not string
- content list is just text, and no images
- if image passed in, then just return as is (user-intended)
- if `name` is passed, then drop it for mistral API: https://github.com/BerriAI/litellm/issues/6696
Motivation: mistral api doesn't support content as a list
"""
## 1. If 'image_url' in content, then return as is
for m in messages:
_content_block = m.get("content")
if _content_block and isinstance(_content_block, list):
for c in _content_block:
if c.get("type") == "image_url":
return messages
## 2. If content is list, then convert to string
messages = handle_messages_with_content_list_to_str_conversion(messages)
## 3. Handle name in message
new_messages: List[AllMessageValues] = []
for m in messages:
m = MistralConfig._handle_name_in_message(m)
m = MistralConfig._handle_tool_call_message(m)
m = strip_none_values_from_message(m) # prevents 'extra_forbidden' error
new_messages.append(m)
return new_messages
@classmethod
def _handle_name_in_message(cls, message: AllMessageValues) -> AllMessageValues:
"""
Mistral API only supports `name` in tool messages
If role == tool, then we keep `name`
Otherwise, we drop `name`
"""
_name = message.get("name") # type: ignore
if _name is not None and message["role"] != "tool":
message.pop("name", None) # type: ignore
return message
@classmethod
def _handle_tool_call_message(cls, message: AllMessageValues) -> AllMessageValues:
"""
Mistral API only supports tool_calls in Messages in `MistralToolCallMessage` spec
"""
_tool_calls = message.get("tool_calls")
mistral_tool_calls: List[MistralToolCallMessage] = []
if _tool_calls is not None and isinstance(_tool_calls, list):
for _tool in _tool_calls:
_tool_call_message = MistralToolCallMessage(
id=_tool.get("id"),
type="function",
function=_tool.get("function"), # type: ignore
)
mistral_tool_calls.append(_tool_call_message)
message["tool_calls"] = mistral_tool_calls # type: ignore
return message
|