|
import json |
|
import os |
|
import time |
|
from copy import deepcopy |
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union |
|
|
|
import httpx |
|
|
|
import litellm |
|
from litellm.litellm_core_utils.prompt_templates.common_utils import ( |
|
convert_content_list_to_str, |
|
) |
|
from litellm.litellm_core_utils.prompt_templates.factory import ( |
|
custom_prompt, |
|
prompt_factory, |
|
) |
|
from litellm.litellm_core_utils.streaming_handler import CustomStreamWrapper |
|
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException |
|
from litellm.secret_managers.main import get_secret_str |
|
from litellm.types.llms.openai import AllMessageValues |
|
from litellm.types.utils import Choices, Message, ModelResponse, Usage |
|
from litellm.utils import token_counter |
|
|
|
from ..common_utils import HuggingfaceError, hf_task_list, hf_tasks, output_parser |
|
|
|
if TYPE_CHECKING: |
|
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj |
|
|
|
LoggingClass = LiteLLMLoggingObj |
|
else: |
|
LoggingClass = Any |
|
|
|
|
|
tgi_models_cache = None |
|
conv_models_cache = None |
|
|
|
|
|
class HuggingfaceChatConfig(BaseConfig): |
|
""" |
|
Reference: https://huggingface.github.io/text-generation-inference/#/Text%20Generation%20Inference/compat_generate |
|
""" |
|
|
|
hf_task: Optional[hf_tasks] = ( |
|
None |
|
) |
|
best_of: Optional[int] = None |
|
decoder_input_details: Optional[bool] = None |
|
details: Optional[bool] = True |
|
max_new_tokens: Optional[int] = None |
|
repetition_penalty: Optional[float] = None |
|
return_full_text: Optional[bool] = ( |
|
False |
|
) |
|
seed: Optional[int] = None |
|
temperature: Optional[float] = None |
|
top_k: Optional[int] = None |
|
top_n_tokens: Optional[int] = None |
|
top_p: Optional[int] = None |
|
truncate: Optional[int] = None |
|
typical_p: Optional[float] = None |
|
watermark: Optional[bool] = None |
|
|
|
def __init__( |
|
self, |
|
best_of: Optional[int] = None, |
|
decoder_input_details: Optional[bool] = None, |
|
details: Optional[bool] = None, |
|
max_new_tokens: Optional[int] = None, |
|
repetition_penalty: Optional[float] = None, |
|
return_full_text: Optional[bool] = None, |
|
seed: Optional[int] = None, |
|
temperature: Optional[float] = None, |
|
top_k: Optional[int] = None, |
|
top_n_tokens: Optional[int] = None, |
|
top_p: Optional[int] = None, |
|
truncate: Optional[int] = None, |
|
typical_p: Optional[float] = None, |
|
watermark: Optional[bool] = None, |
|
) -> None: |
|
locals_ = locals() |
|
for key, value in locals_.items(): |
|
if key != "self" and value is not None: |
|
setattr(self.__class__, key, value) |
|
|
|
@classmethod |
|
def get_config(cls): |
|
return super().get_config() |
|
|
|
def get_special_options_params(self): |
|
return ["use_cache", "wait_for_model"] |
|
|
|
def get_supported_openai_params(self, model: str): |
|
return [ |
|
"stream", |
|
"temperature", |
|
"max_tokens", |
|
"max_completion_tokens", |
|
"top_p", |
|
"stop", |
|
"n", |
|
"echo", |
|
] |
|
|
|
def map_openai_params( |
|
self, |
|
non_default_params: Dict, |
|
optional_params: Dict, |
|
model: str, |
|
drop_params: bool, |
|
) -> Dict: |
|
for param, value in non_default_params.items(): |
|
|
|
if param == "temperature": |
|
if value == 0.0 or value == 0: |
|
|
|
|
|
value = 0.01 |
|
optional_params["temperature"] = value |
|
if param == "top_p": |
|
optional_params["top_p"] = value |
|
if param == "n": |
|
optional_params["best_of"] = value |
|
optional_params["do_sample"] = ( |
|
True |
|
) |
|
if param == "stream": |
|
optional_params["stream"] = value |
|
if param == "stop": |
|
optional_params["stop"] = value |
|
if param == "max_tokens" or param == "max_completion_tokens": |
|
|
|
|
|
if value == 0: |
|
value = 1 |
|
optional_params["max_new_tokens"] = value |
|
if param == "echo": |
|
|
|
|
|
optional_params["decoder_input_details"] = True |
|
|
|
return optional_params |
|
|
|
def get_hf_api_key(self) -> Optional[str]: |
|
return get_secret_str("HUGGINGFACE_API_KEY") |
|
|
|
def read_tgi_conv_models(self): |
|
try: |
|
global tgi_models_cache, conv_models_cache |
|
|
|
|
|
if (tgi_models_cache is not None) and (conv_models_cache is not None): |
|
return tgi_models_cache, conv_models_cache |
|
|
|
tgi_models = set() |
|
script_directory = os.path.dirname(os.path.abspath(__file__)) |
|
script_directory = os.path.dirname(script_directory) |
|
|
|
file_path = os.path.join( |
|
script_directory, |
|
"huggingface_llms_metadata", |
|
"hf_text_generation_models.txt", |
|
) |
|
|
|
with open(file_path, "r") as file: |
|
for line in file: |
|
tgi_models.add(line.strip()) |
|
|
|
|
|
tgi_models_cache = tgi_models |
|
|
|
|
|
file_path = os.path.join( |
|
script_directory, |
|
"huggingface_llms_metadata", |
|
"hf_conversational_models.txt", |
|
) |
|
conv_models = set() |
|
with open(file_path, "r") as file: |
|
for line in file: |
|
conv_models.add(line.strip()) |
|
|
|
conv_models_cache = conv_models |
|
return tgi_models, conv_models |
|
except Exception: |
|
return set(), set() |
|
|
|
def get_hf_task_for_model(self, model: str) -> Tuple[hf_tasks, str]: |
|
|
|
|
|
if model.split("/")[0] in hf_task_list: |
|
split_model = model.split("/", 1) |
|
return split_model[0], split_model[1] |
|
tgi_models, conversational_models = self.read_tgi_conv_models() |
|
|
|
if model in tgi_models: |
|
return "text-generation-inference", model |
|
elif model in conversational_models: |
|
return "conversational", model |
|
elif "roneneldan/TinyStories" in model: |
|
return "text-generation", model |
|
else: |
|
return "text-generation-inference", model |
|
|
|
def transform_request( |
|
self, |
|
model: str, |
|
messages: List[AllMessageValues], |
|
optional_params: dict, |
|
litellm_params: dict, |
|
headers: dict, |
|
) -> dict: |
|
task = litellm_params.get("task", None) |
|
|
|
if task is None or not isinstance(task, str) or task not in hf_task_list: |
|
raise Exception( |
|
"Invalid hf task - {}. Valid formats - {}.".format(task, hf_tasks) |
|
) |
|
|
|
|
|
config = litellm.HuggingfaceConfig.get_config() |
|
for k, v in config.items(): |
|
if ( |
|
k not in optional_params |
|
): |
|
optional_params[k] = v |
|
|
|
|
|
|
|
special_params = self.get_special_options_params() |
|
special_params_dict = {} |
|
|
|
keys_to_pop = [] |
|
|
|
for k, v in optional_params.items(): |
|
if k in special_params: |
|
special_params_dict[k] = v |
|
keys_to_pop.append(k) |
|
|
|
|
|
for k in keys_to_pop: |
|
optional_params.pop(k) |
|
if task == "conversational": |
|
inference_params = deepcopy(optional_params) |
|
inference_params.pop("details") |
|
inference_params.pop("return_full_text") |
|
past_user_inputs = [] |
|
generated_responses = [] |
|
text = "" |
|
for message in messages: |
|
if message["role"] == "user": |
|
if text != "": |
|
past_user_inputs.append(text) |
|
text = convert_content_list_to_str(message) |
|
elif message["role"] == "assistant" or message["role"] == "system": |
|
generated_responses.append(convert_content_list_to_str(message)) |
|
data = { |
|
"inputs": { |
|
"text": text, |
|
"past_user_inputs": past_user_inputs, |
|
"generated_responses": generated_responses, |
|
}, |
|
"parameters": inference_params, |
|
} |
|
|
|
elif task == "text-generation-inference": |
|
|
|
if model in litellm.custom_prompt_dict: |
|
|
|
model_prompt_details = litellm.custom_prompt_dict[model] |
|
prompt = custom_prompt( |
|
role_dict=model_prompt_details.get("roles", None), |
|
initial_prompt_value=model_prompt_details.get( |
|
"initial_prompt_value", "" |
|
), |
|
final_prompt_value=model_prompt_details.get( |
|
"final_prompt_value", "" |
|
), |
|
messages=messages, |
|
) |
|
else: |
|
prompt = prompt_factory(model=model, messages=messages) |
|
data = { |
|
"inputs": prompt, |
|
"parameters": optional_params, |
|
"stream": ( |
|
True |
|
if "stream" in optional_params |
|
and isinstance(optional_params["stream"], bool) |
|
and optional_params["stream"] is True |
|
else False |
|
), |
|
} |
|
else: |
|
|
|
|
|
if model in litellm.custom_prompt_dict: |
|
|
|
model_prompt_details = litellm.custom_prompt_dict[model] |
|
prompt = custom_prompt( |
|
role_dict=model_prompt_details.get("roles", {}), |
|
initial_prompt_value=model_prompt_details.get( |
|
"initial_prompt_value", "" |
|
), |
|
final_prompt_value=model_prompt_details.get( |
|
"final_prompt_value", "" |
|
), |
|
bos_token=model_prompt_details.get("bos_token", ""), |
|
eos_token=model_prompt_details.get("eos_token", ""), |
|
messages=messages, |
|
) |
|
else: |
|
prompt = prompt_factory(model=model, messages=messages) |
|
inference_params = deepcopy(optional_params) |
|
inference_params.pop("details") |
|
inference_params.pop("return_full_text") |
|
data = { |
|
"inputs": prompt, |
|
} |
|
if task == "text-generation-inference": |
|
data["parameters"] = inference_params |
|
data["stream"] = ( |
|
True |
|
if "stream" in optional_params and optional_params["stream"] is True |
|
else False |
|
) |
|
|
|
|
|
if len(special_params_dict.keys()) > 0: |
|
data.update({"options": special_params_dict}) |
|
|
|
return data |
|
|
|
def get_api_base(self, api_base: Optional[str], model: str) -> str: |
|
""" |
|
Get the API base for the Huggingface API. |
|
|
|
Do not add the chat/embedding/rerank extension here. Let the handler do this. |
|
""" |
|
if "https" in model: |
|
completion_url = model |
|
elif api_base is not None: |
|
completion_url = api_base |
|
elif "HF_API_BASE" in os.environ: |
|
completion_url = os.getenv("HF_API_BASE", "") |
|
elif "HUGGINGFACE_API_BASE" in os.environ: |
|
completion_url = os.getenv("HUGGINGFACE_API_BASE", "") |
|
else: |
|
completion_url = f"https://api-inference.huggingface.co/models/{model}" |
|
|
|
return completion_url |
|
|
|
def validate_environment( |
|
self, |
|
headers: Dict, |
|
model: str, |
|
messages: List[AllMessageValues], |
|
optional_params: Dict, |
|
api_key: Optional[str] = None, |
|
api_base: Optional[str] = None, |
|
) -> Dict: |
|
default_headers = { |
|
"content-type": "application/json", |
|
} |
|
if api_key is not None: |
|
default_headers["Authorization"] = ( |
|
f"Bearer {api_key}" |
|
) |
|
|
|
headers = {**headers, **default_headers} |
|
return headers |
|
|
|
def get_error_class( |
|
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers] |
|
) -> BaseLLMException: |
|
return HuggingfaceError( |
|
status_code=status_code, message=error_message, headers=headers |
|
) |
|
|
|
def _convert_streamed_response_to_complete_response( |
|
self, |
|
response: httpx.Response, |
|
logging_obj: LoggingClass, |
|
model: str, |
|
data: dict, |
|
api_key: Optional[str] = None, |
|
) -> List[Dict[str, Any]]: |
|
streamed_response = CustomStreamWrapper( |
|
completion_stream=response.iter_lines(), |
|
model=model, |
|
custom_llm_provider="huggingface", |
|
logging_obj=logging_obj, |
|
) |
|
content = "" |
|
for chunk in streamed_response: |
|
content += chunk["choices"][0]["delta"]["content"] |
|
completion_response: List[Dict[str, Any]] = [{"generated_text": content}] |
|
|
|
logging_obj.post_call( |
|
input=data, |
|
api_key=api_key, |
|
original_response=completion_response, |
|
additional_args={"complete_input_dict": data}, |
|
) |
|
return completion_response |
|
|
|
def convert_to_model_response_object( |
|
self, |
|
completion_response: Union[List[Dict[str, Any]], Dict[str, Any]], |
|
model_response: ModelResponse, |
|
task: Optional[hf_tasks], |
|
optional_params: dict, |
|
encoding: Any, |
|
messages: List[AllMessageValues], |
|
model: str, |
|
): |
|
if task is None: |
|
task = "text-generation-inference" |
|
|
|
if task == "conversational": |
|
if len(completion_response["generated_text"]) > 0: |
|
model_response.choices[0].message.content = completion_response[ |
|
"generated_text" |
|
] |
|
elif task == "text-generation-inference": |
|
if ( |
|
not isinstance(completion_response, list) |
|
or not isinstance(completion_response[0], dict) |
|
or "generated_text" not in completion_response[0] |
|
): |
|
raise HuggingfaceError( |
|
status_code=422, |
|
message=f"response is not in expected format - {completion_response}", |
|
headers=None, |
|
) |
|
|
|
if len(completion_response[0]["generated_text"]) > 0: |
|
model_response.choices[0].message.content = output_parser( |
|
completion_response[0]["generated_text"] |
|
) |
|
|
|
if ( |
|
"details" in completion_response[0] |
|
and "tokens" in completion_response[0]["details"] |
|
): |
|
model_response.choices[0].finish_reason = completion_response[0][ |
|
"details" |
|
]["finish_reason"] |
|
sum_logprob = 0 |
|
for token in completion_response[0]["details"]["tokens"]: |
|
if token["logprob"] is not None: |
|
sum_logprob += token["logprob"] |
|
setattr(model_response.choices[0].message, "_logprob", sum_logprob) |
|
if "best_of" in optional_params and optional_params["best_of"] > 1: |
|
if ( |
|
"details" in completion_response[0] |
|
and "best_of_sequences" in completion_response[0]["details"] |
|
): |
|
choices_list = [] |
|
for idx, item in enumerate( |
|
completion_response[0]["details"]["best_of_sequences"] |
|
): |
|
sum_logprob = 0 |
|
for token in item["tokens"]: |
|
if token["logprob"] is not None: |
|
sum_logprob += token["logprob"] |
|
if len(item["generated_text"]) > 0: |
|
message_obj = Message( |
|
content=output_parser(item["generated_text"]), |
|
logprobs=sum_logprob, |
|
) |
|
else: |
|
message_obj = Message(content=None) |
|
choice_obj = Choices( |
|
finish_reason=item["finish_reason"], |
|
index=idx + 1, |
|
message=message_obj, |
|
) |
|
choices_list.append(choice_obj) |
|
model_response.choices.extend(choices_list) |
|
elif task == "text-classification": |
|
model_response.choices[0].message.content = json.dumps( |
|
completion_response |
|
) |
|
else: |
|
if ( |
|
isinstance(completion_response, list) |
|
and len(completion_response[0]["generated_text"]) > 0 |
|
): |
|
model_response.choices[0].message.content = output_parser( |
|
completion_response[0]["generated_text"] |
|
) |
|
|
|
prompt_tokens = 0 |
|
try: |
|
prompt_tokens = token_counter(model=model, messages=messages) |
|
except Exception: |
|
|
|
pass |
|
output_text = model_response["choices"][0]["message"].get("content", "") |
|
if output_text is not None and len(output_text) > 0: |
|
completion_tokens = 0 |
|
try: |
|
completion_tokens = len( |
|
encoding.encode( |
|
model_response["choices"][0]["message"].get("content", "") |
|
) |
|
) |
|
except Exception: |
|
|
|
pass |
|
else: |
|
completion_tokens = 0 |
|
|
|
model_response.created = int(time.time()) |
|
model_response.model = model |
|
usage = Usage( |
|
prompt_tokens=prompt_tokens, |
|
completion_tokens=completion_tokens, |
|
total_tokens=prompt_tokens + completion_tokens, |
|
) |
|
setattr(model_response, "usage", usage) |
|
model_response._hidden_params["original_response"] = completion_response |
|
return model_response |
|
|
|
def transform_response( |
|
self, |
|
model: str, |
|
raw_response: httpx.Response, |
|
model_response: ModelResponse, |
|
logging_obj: LoggingClass, |
|
request_data: Dict, |
|
messages: List[AllMessageValues], |
|
optional_params: Dict, |
|
litellm_params: Dict, |
|
encoding: Any, |
|
api_key: Optional[str] = None, |
|
json_mode: Optional[bool] = None, |
|
) -> ModelResponse: |
|
|
|
task = litellm_params.get("task", None) |
|
is_streamed = False |
|
if ( |
|
raw_response.__dict__["headers"].get("Content-Type", "") |
|
== "text/event-stream" |
|
): |
|
is_streamed = True |
|
|
|
|
|
if is_streamed: |
|
completion_response = self._convert_streamed_response_to_complete_response( |
|
response=raw_response, |
|
logging_obj=logging_obj, |
|
model=model, |
|
data=request_data, |
|
api_key=api_key, |
|
) |
|
else: |
|
|
|
logging_obj.post_call( |
|
input=request_data, |
|
api_key=api_key, |
|
original_response=raw_response.text, |
|
additional_args={"complete_input_dict": request_data}, |
|
) |
|
|
|
try: |
|
completion_response = raw_response.json() |
|
if isinstance(completion_response, dict): |
|
completion_response = [completion_response] |
|
except Exception: |
|
raise HuggingfaceError( |
|
message=f"Original Response received: {raw_response.text}", |
|
status_code=raw_response.status_code, |
|
) |
|
|
|
if isinstance(completion_response, dict) and "error" in completion_response: |
|
raise HuggingfaceError( |
|
message=completion_response["error"], |
|
status_code=raw_response.status_code, |
|
) |
|
return self.convert_to_model_response_object( |
|
completion_response=completion_response, |
|
model_response=model_response, |
|
task=task if task is not None and task in hf_task_list else None, |
|
optional_params=optional_params, |
|
encoding=encoding, |
|
messages=messages, |
|
model=model, |
|
) |
|
|