TestLLM / litellm /llms /huggingface /chat /transformation.py
Raju2024's picture
Upload 1072 files
e3278e4 verified
raw
history blame
23.7 kB
import json
import os
import time
from copy import deepcopy
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import httpx
import litellm
from litellm.litellm_core_utils.prompt_templates.common_utils import (
convert_content_list_to_str,
)
from litellm.litellm_core_utils.prompt_templates.factory import (
custom_prompt,
prompt_factory,
)
from litellm.litellm_core_utils.streaming_handler import CustomStreamWrapper
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.openai import AllMessageValues
from litellm.types.utils import Choices, Message, ModelResponse, Usage
from litellm.utils import token_counter
from ..common_utils import HuggingfaceError, hf_task_list, hf_tasks, output_parser
if TYPE_CHECKING:
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
LoggingClass = LiteLLMLoggingObj
else:
LoggingClass = Any
tgi_models_cache = None
conv_models_cache = None
class HuggingfaceChatConfig(BaseConfig):
"""
Reference: https://huggingface.github.io/text-generation-inference/#/Text%20Generation%20Inference/compat_generate
"""
hf_task: Optional[hf_tasks] = (
None # litellm-specific param, used to know the api spec to use when calling huggingface api
)
best_of: Optional[int] = None
decoder_input_details: Optional[bool] = None
details: Optional[bool] = True # enables returning logprobs + best of
max_new_tokens: Optional[int] = None
repetition_penalty: Optional[float] = None
return_full_text: Optional[bool] = (
False # by default don't return the input as part of the output
)
seed: Optional[int] = None
temperature: Optional[float] = None
top_k: Optional[int] = None
top_n_tokens: Optional[int] = None
top_p: Optional[int] = None
truncate: Optional[int] = None
typical_p: Optional[float] = None
watermark: Optional[bool] = None
def __init__(
self,
best_of: Optional[int] = None,
decoder_input_details: Optional[bool] = None,
details: Optional[bool] = None,
max_new_tokens: Optional[int] = None,
repetition_penalty: Optional[float] = None,
return_full_text: Optional[bool] = None,
seed: Optional[int] = None,
temperature: Optional[float] = None,
top_k: Optional[int] = None,
top_n_tokens: Optional[int] = None,
top_p: Optional[int] = None,
truncate: Optional[int] = None,
typical_p: Optional[float] = None,
watermark: Optional[bool] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return super().get_config()
def get_special_options_params(self):
return ["use_cache", "wait_for_model"]
def get_supported_openai_params(self, model: str):
return [
"stream",
"temperature",
"max_tokens",
"max_completion_tokens",
"top_p",
"stop",
"n",
"echo",
]
def map_openai_params(
self,
non_default_params: Dict,
optional_params: Dict,
model: str,
drop_params: bool,
) -> Dict:
for param, value in non_default_params.items():
# temperature, top_p, n, stream, stop, max_tokens, n, presence_penalty default to None
if param == "temperature":
if value == 0.0 or value == 0:
# hugging face exception raised when temp==0
# Failed: Error occurred: HuggingfaceException - Input validation error: `temperature` must be strictly positive
value = 0.01
optional_params["temperature"] = value
if param == "top_p":
optional_params["top_p"] = value
if param == "n":
optional_params["best_of"] = value
optional_params["do_sample"] = (
True # Need to sample if you want best of for hf inference endpoints
)
if param == "stream":
optional_params["stream"] = value
if param == "stop":
optional_params["stop"] = value
if param == "max_tokens" or param == "max_completion_tokens":
# HF TGI raises the following exception when max_new_tokens==0
# Failed: Error occurred: HuggingfaceException - Input validation error: `max_new_tokens` must be strictly positive
if value == 0:
value = 1
optional_params["max_new_tokens"] = value
if param == "echo":
# https://huggingface.co/docs/huggingface_hub/main/en/package_reference/inference_client#huggingface_hub.InferenceClient.text_generation.decoder_input_details
# Return the decoder input token logprobs and ids. You must set details=True as well for it to be taken into account. Defaults to False
optional_params["decoder_input_details"] = True
return optional_params
def get_hf_api_key(self) -> Optional[str]:
return get_secret_str("HUGGINGFACE_API_KEY")
def read_tgi_conv_models(self):
try:
global tgi_models_cache, conv_models_cache
# Check if the cache is already populated
# so we don't keep on reading txt file if there are 1k requests
if (tgi_models_cache is not None) and (conv_models_cache is not None):
return tgi_models_cache, conv_models_cache
# If not, read the file and populate the cache
tgi_models = set()
script_directory = os.path.dirname(os.path.abspath(__file__))
script_directory = os.path.dirname(script_directory)
# Construct the file path relative to the script's directory
file_path = os.path.join(
script_directory,
"huggingface_llms_metadata",
"hf_text_generation_models.txt",
)
with open(file_path, "r") as file:
for line in file:
tgi_models.add(line.strip())
# Cache the set for future use
tgi_models_cache = tgi_models
# If not, read the file and populate the cache
file_path = os.path.join(
script_directory,
"huggingface_llms_metadata",
"hf_conversational_models.txt",
)
conv_models = set()
with open(file_path, "r") as file:
for line in file:
conv_models.add(line.strip())
# Cache the set for future use
conv_models_cache = conv_models
return tgi_models, conv_models
except Exception:
return set(), set()
def get_hf_task_for_model(self, model: str) -> Tuple[hf_tasks, str]:
# read text file, cast it to set
# read the file called "huggingface_llms_metadata/hf_text_generation_models.txt"
if model.split("/")[0] in hf_task_list:
split_model = model.split("/", 1)
return split_model[0], split_model[1] # type: ignore
tgi_models, conversational_models = self.read_tgi_conv_models()
if model in tgi_models:
return "text-generation-inference", model
elif model in conversational_models:
return "conversational", model
elif "roneneldan/TinyStories" in model:
return "text-generation", model
else:
return "text-generation-inference", model # default to tgi
def transform_request(
self,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
headers: dict,
) -> dict:
task = litellm_params.get("task", None)
## VALIDATE API FORMAT
if task is None or not isinstance(task, str) or task not in hf_task_list:
raise Exception(
"Invalid hf task - {}. Valid formats - {}.".format(task, hf_tasks)
)
## Load Config
config = litellm.HuggingfaceConfig.get_config()
for k, v in config.items():
if (
k not in optional_params
): # completion(top_k=3) > huggingfaceConfig(top_k=3) <- allows for dynamic variables to be passed in
optional_params[k] = v
### MAP INPUT PARAMS
#### HANDLE SPECIAL PARAMS
special_params = self.get_special_options_params()
special_params_dict = {}
# Create a list of keys to pop after iteration
keys_to_pop = []
for k, v in optional_params.items():
if k in special_params:
special_params_dict[k] = v
keys_to_pop.append(k)
# Pop the keys from the dictionary after iteration
for k in keys_to_pop:
optional_params.pop(k)
if task == "conversational":
inference_params = deepcopy(optional_params)
inference_params.pop("details")
inference_params.pop("return_full_text")
past_user_inputs = []
generated_responses = []
text = ""
for message in messages:
if message["role"] == "user":
if text != "":
past_user_inputs.append(text)
text = convert_content_list_to_str(message)
elif message["role"] == "assistant" or message["role"] == "system":
generated_responses.append(convert_content_list_to_str(message))
data = {
"inputs": {
"text": text,
"past_user_inputs": past_user_inputs,
"generated_responses": generated_responses,
},
"parameters": inference_params,
}
elif task == "text-generation-inference":
# always send "details" and "return_full_text" as params
if model in litellm.custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = litellm.custom_prompt_dict[model]
prompt = custom_prompt(
role_dict=model_prompt_details.get("roles", None),
initial_prompt_value=model_prompt_details.get(
"initial_prompt_value", ""
),
final_prompt_value=model_prompt_details.get(
"final_prompt_value", ""
),
messages=messages,
)
else:
prompt = prompt_factory(model=model, messages=messages)
data = {
"inputs": prompt, # type: ignore
"parameters": optional_params,
"stream": ( # type: ignore
True
if "stream" in optional_params
and isinstance(optional_params["stream"], bool)
and optional_params["stream"] is True # type: ignore
else False
),
}
else:
# Non TGI and Conversational llms
# We need this branch, it removes 'details' and 'return_full_text' from params
if model in litellm.custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = litellm.custom_prompt_dict[model]
prompt = custom_prompt(
role_dict=model_prompt_details.get("roles", {}),
initial_prompt_value=model_prompt_details.get(
"initial_prompt_value", ""
),
final_prompt_value=model_prompt_details.get(
"final_prompt_value", ""
),
bos_token=model_prompt_details.get("bos_token", ""),
eos_token=model_prompt_details.get("eos_token", ""),
messages=messages,
)
else:
prompt = prompt_factory(model=model, messages=messages)
inference_params = deepcopy(optional_params)
inference_params.pop("details")
inference_params.pop("return_full_text")
data = {
"inputs": prompt, # type: ignore
}
if task == "text-generation-inference":
data["parameters"] = inference_params
data["stream"] = ( # type: ignore
True # type: ignore
if "stream" in optional_params and optional_params["stream"] is True
else False
)
### RE-ADD SPECIAL PARAMS
if len(special_params_dict.keys()) > 0:
data.update({"options": special_params_dict})
return data
def get_api_base(self, api_base: Optional[str], model: str) -> str:
"""
Get the API base for the Huggingface API.
Do not add the chat/embedding/rerank extension here. Let the handler do this.
"""
if "https" in model:
completion_url = model
elif api_base is not None:
completion_url = api_base
elif "HF_API_BASE" in os.environ:
completion_url = os.getenv("HF_API_BASE", "")
elif "HUGGINGFACE_API_BASE" in os.environ:
completion_url = os.getenv("HUGGINGFACE_API_BASE", "")
else:
completion_url = f"https://api-inference.huggingface.co/models/{model}"
return completion_url
def validate_environment(
self,
headers: Dict,
model: str,
messages: List[AllMessageValues],
optional_params: Dict,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
) -> Dict:
default_headers = {
"content-type": "application/json",
}
if api_key is not None:
default_headers["Authorization"] = (
f"Bearer {api_key}" # Huggingface Inference Endpoint default is to accept bearer tokens
)
headers = {**headers, **default_headers}
return headers
def get_error_class(
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
) -> BaseLLMException:
return HuggingfaceError(
status_code=status_code, message=error_message, headers=headers
)
def _convert_streamed_response_to_complete_response(
self,
response: httpx.Response,
logging_obj: LoggingClass,
model: str,
data: dict,
api_key: Optional[str] = None,
) -> List[Dict[str, Any]]:
streamed_response = CustomStreamWrapper(
completion_stream=response.iter_lines(),
model=model,
custom_llm_provider="huggingface",
logging_obj=logging_obj,
)
content = ""
for chunk in streamed_response:
content += chunk["choices"][0]["delta"]["content"]
completion_response: List[Dict[str, Any]] = [{"generated_text": content}]
## LOGGING
logging_obj.post_call(
input=data,
api_key=api_key,
original_response=completion_response,
additional_args={"complete_input_dict": data},
)
return completion_response
def convert_to_model_response_object( # noqa: PLR0915
self,
completion_response: Union[List[Dict[str, Any]], Dict[str, Any]],
model_response: ModelResponse,
task: Optional[hf_tasks],
optional_params: dict,
encoding: Any,
messages: List[AllMessageValues],
model: str,
):
if task is None:
task = "text-generation-inference" # default to tgi
if task == "conversational":
if len(completion_response["generated_text"]) > 0: # type: ignore
model_response.choices[0].message.content = completion_response[ # type: ignore
"generated_text"
]
elif task == "text-generation-inference":
if (
not isinstance(completion_response, list)
or not isinstance(completion_response[0], dict)
or "generated_text" not in completion_response[0]
):
raise HuggingfaceError(
status_code=422,
message=f"response is not in expected format - {completion_response}",
headers=None,
)
if len(completion_response[0]["generated_text"]) > 0:
model_response.choices[0].message.content = output_parser( # type: ignore
completion_response[0]["generated_text"]
)
## GETTING LOGPROBS + FINISH REASON
if (
"details" in completion_response[0]
and "tokens" in completion_response[0]["details"]
):
model_response.choices[0].finish_reason = completion_response[0][
"details"
]["finish_reason"]
sum_logprob = 0
for token in completion_response[0]["details"]["tokens"]:
if token["logprob"] is not None:
sum_logprob += token["logprob"]
setattr(model_response.choices[0].message, "_logprob", sum_logprob) # type: ignore
if "best_of" in optional_params and optional_params["best_of"] > 1:
if (
"details" in completion_response[0]
and "best_of_sequences" in completion_response[0]["details"]
):
choices_list = []
for idx, item in enumerate(
completion_response[0]["details"]["best_of_sequences"]
):
sum_logprob = 0
for token in item["tokens"]:
if token["logprob"] is not None:
sum_logprob += token["logprob"]
if len(item["generated_text"]) > 0:
message_obj = Message(
content=output_parser(item["generated_text"]),
logprobs=sum_logprob,
)
else:
message_obj = Message(content=None)
choice_obj = Choices(
finish_reason=item["finish_reason"],
index=idx + 1,
message=message_obj,
)
choices_list.append(choice_obj)
model_response.choices.extend(choices_list)
elif task == "text-classification":
model_response.choices[0].message.content = json.dumps( # type: ignore
completion_response
)
else:
if (
isinstance(completion_response, list)
and len(completion_response[0]["generated_text"]) > 0
):
model_response.choices[0].message.content = output_parser( # type: ignore
completion_response[0]["generated_text"]
)
## CALCULATING USAGE
prompt_tokens = 0
try:
prompt_tokens = token_counter(model=model, messages=messages)
except Exception:
# this should remain non blocking we should not block a response returning if calculating usage fails
pass
output_text = model_response["choices"][0]["message"].get("content", "")
if output_text is not None and len(output_text) > 0:
completion_tokens = 0
try:
completion_tokens = len(
encoding.encode(
model_response["choices"][0]["message"].get("content", "")
)
) ##[TODO] use the llama2 tokenizer here
except Exception:
# this should remain non blocking we should not block a response returning if calculating usage fails
pass
else:
completion_tokens = 0
model_response.created = int(time.time())
model_response.model = model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
setattr(model_response, "usage", usage)
model_response._hidden_params["original_response"] = completion_response
return model_response
def transform_response(
self,
model: str,
raw_response: httpx.Response,
model_response: ModelResponse,
logging_obj: LoggingClass,
request_data: Dict,
messages: List[AllMessageValues],
optional_params: Dict,
litellm_params: Dict,
encoding: Any,
api_key: Optional[str] = None,
json_mode: Optional[bool] = None,
) -> ModelResponse:
## Some servers might return streaming responses even though stream was not set to true. (e.g. Baseten)
task = litellm_params.get("task", None)
is_streamed = False
if (
raw_response.__dict__["headers"].get("Content-Type", "")
== "text/event-stream"
):
is_streamed = True
# iterate over the complete streamed response, and return the final answer
if is_streamed:
completion_response = self._convert_streamed_response_to_complete_response(
response=raw_response,
logging_obj=logging_obj,
model=model,
data=request_data,
api_key=api_key,
)
else:
## LOGGING
logging_obj.post_call(
input=request_data,
api_key=api_key,
original_response=raw_response.text,
additional_args={"complete_input_dict": request_data},
)
## RESPONSE OBJECT
try:
completion_response = raw_response.json()
if isinstance(completion_response, dict):
completion_response = [completion_response]
except Exception:
raise HuggingfaceError(
message=f"Original Response received: {raw_response.text}",
status_code=raw_response.status_code,
)
if isinstance(completion_response, dict) and "error" in completion_response:
raise HuggingfaceError(
message=completion_response["error"], # type: ignore
status_code=raw_response.status_code,
)
return self.convert_to_model_response_object(
completion_response=completion_response,
model_response=model_response,
task=task if task is not None and task in hf_task_list else None,
optional_params=optional_params,
encoding=encoding,
messages=messages,
model=model,
)