File size: 23,703 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
import json
import os
import time
from copy import deepcopy
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union

import httpx

import litellm
from litellm.litellm_core_utils.prompt_templates.common_utils import (
    convert_content_list_to_str,
)
from litellm.litellm_core_utils.prompt_templates.factory import (
    custom_prompt,
    prompt_factory,
)
from litellm.litellm_core_utils.streaming_handler import CustomStreamWrapper
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.openai import AllMessageValues
from litellm.types.utils import Choices, Message, ModelResponse, Usage
from litellm.utils import token_counter

from ..common_utils import HuggingfaceError, hf_task_list, hf_tasks, output_parser

if TYPE_CHECKING:
    from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj

    LoggingClass = LiteLLMLoggingObj
else:
    LoggingClass = Any


tgi_models_cache = None
conv_models_cache = None


class HuggingfaceChatConfig(BaseConfig):
    """
    Reference: https://huggingface.github.io/text-generation-inference/#/Text%20Generation%20Inference/compat_generate
    """

    hf_task: Optional[hf_tasks] = (
        None  # litellm-specific param, used to know the api spec to use when calling huggingface api
    )
    best_of: Optional[int] = None
    decoder_input_details: Optional[bool] = None
    details: Optional[bool] = True  # enables returning logprobs + best of
    max_new_tokens: Optional[int] = None
    repetition_penalty: Optional[float] = None
    return_full_text: Optional[bool] = (
        False  # by default don't return the input as part of the output
    )
    seed: Optional[int] = None
    temperature: Optional[float] = None
    top_k: Optional[int] = None
    top_n_tokens: Optional[int] = None
    top_p: Optional[int] = None
    truncate: Optional[int] = None
    typical_p: Optional[float] = None
    watermark: Optional[bool] = None

    def __init__(
        self,
        best_of: Optional[int] = None,
        decoder_input_details: Optional[bool] = None,
        details: Optional[bool] = None,
        max_new_tokens: Optional[int] = None,
        repetition_penalty: Optional[float] = None,
        return_full_text: Optional[bool] = None,
        seed: Optional[int] = None,
        temperature: Optional[float] = None,
        top_k: Optional[int] = None,
        top_n_tokens: Optional[int] = None,
        top_p: Optional[int] = None,
        truncate: Optional[int] = None,
        typical_p: Optional[float] = None,
        watermark: Optional[bool] = None,
    ) -> None:
        locals_ = locals()
        for key, value in locals_.items():
            if key != "self" and value is not None:
                setattr(self.__class__, key, value)

    @classmethod
    def get_config(cls):
        return super().get_config()

    def get_special_options_params(self):
        return ["use_cache", "wait_for_model"]

    def get_supported_openai_params(self, model: str):
        return [
            "stream",
            "temperature",
            "max_tokens",
            "max_completion_tokens",
            "top_p",
            "stop",
            "n",
            "echo",
        ]

    def map_openai_params(
        self,
        non_default_params: Dict,
        optional_params: Dict,
        model: str,
        drop_params: bool,
    ) -> Dict:
        for param, value in non_default_params.items():
            # temperature, top_p, n, stream, stop, max_tokens, n, presence_penalty default to None
            if param == "temperature":
                if value == 0.0 or value == 0:
                    # hugging face exception raised when temp==0
                    # Failed: Error occurred: HuggingfaceException - Input validation error: `temperature` must be strictly positive
                    value = 0.01
                optional_params["temperature"] = value
            if param == "top_p":
                optional_params["top_p"] = value
            if param == "n":
                optional_params["best_of"] = value
                optional_params["do_sample"] = (
                    True  # Need to sample if you want best of for hf inference endpoints
                )
            if param == "stream":
                optional_params["stream"] = value
            if param == "stop":
                optional_params["stop"] = value
            if param == "max_tokens" or param == "max_completion_tokens":
                # HF TGI raises the following exception when max_new_tokens==0
                # Failed: Error occurred: HuggingfaceException - Input validation error: `max_new_tokens` must be strictly positive
                if value == 0:
                    value = 1
                optional_params["max_new_tokens"] = value
            if param == "echo":
                # https://huggingface.co/docs/huggingface_hub/main/en/package_reference/inference_client#huggingface_hub.InferenceClient.text_generation.decoder_input_details
                #  Return the decoder input token logprobs and ids. You must set details=True as well for it to be taken into account. Defaults to False
                optional_params["decoder_input_details"] = True

        return optional_params

    def get_hf_api_key(self) -> Optional[str]:
        return get_secret_str("HUGGINGFACE_API_KEY")

    def read_tgi_conv_models(self):
        try:
            global tgi_models_cache, conv_models_cache
            # Check if the cache is already populated
            # so we don't keep on reading txt file if there are 1k requests
            if (tgi_models_cache is not None) and (conv_models_cache is not None):
                return tgi_models_cache, conv_models_cache
            # If not, read the file and populate the cache
            tgi_models = set()
            script_directory = os.path.dirname(os.path.abspath(__file__))
            script_directory = os.path.dirname(script_directory)
            # Construct the file path relative to the script's directory
            file_path = os.path.join(
                script_directory,
                "huggingface_llms_metadata",
                "hf_text_generation_models.txt",
            )

            with open(file_path, "r") as file:
                for line in file:
                    tgi_models.add(line.strip())

            # Cache the set for future use
            tgi_models_cache = tgi_models

            # If not, read the file and populate the cache
            file_path = os.path.join(
                script_directory,
                "huggingface_llms_metadata",
                "hf_conversational_models.txt",
            )
            conv_models = set()
            with open(file_path, "r") as file:
                for line in file:
                    conv_models.add(line.strip())
            # Cache the set for future use
            conv_models_cache = conv_models
            return tgi_models, conv_models
        except Exception:
            return set(), set()

    def get_hf_task_for_model(self, model: str) -> Tuple[hf_tasks, str]:
        # read text file, cast it to set
        # read the file called "huggingface_llms_metadata/hf_text_generation_models.txt"
        if model.split("/")[0] in hf_task_list:
            split_model = model.split("/", 1)
            return split_model[0], split_model[1]  # type: ignore
        tgi_models, conversational_models = self.read_tgi_conv_models()

        if model in tgi_models:
            return "text-generation-inference", model
        elif model in conversational_models:
            return "conversational", model
        elif "roneneldan/TinyStories" in model:
            return "text-generation", model
        else:
            return "text-generation-inference", model  # default to tgi

    def transform_request(
        self,
        model: str,
        messages: List[AllMessageValues],
        optional_params: dict,
        litellm_params: dict,
        headers: dict,
    ) -> dict:
        task = litellm_params.get("task", None)
        ## VALIDATE API FORMAT
        if task is None or not isinstance(task, str) or task not in hf_task_list:
            raise Exception(
                "Invalid hf task - {}. Valid formats - {}.".format(task, hf_tasks)
            )

        ## Load Config
        config = litellm.HuggingfaceConfig.get_config()
        for k, v in config.items():
            if (
                k not in optional_params
            ):  # completion(top_k=3) > huggingfaceConfig(top_k=3) <- allows for dynamic variables to be passed in
                optional_params[k] = v

        ### MAP INPUT PARAMS
        #### HANDLE SPECIAL PARAMS
        special_params = self.get_special_options_params()
        special_params_dict = {}
        # Create a list of keys to pop after iteration
        keys_to_pop = []

        for k, v in optional_params.items():
            if k in special_params:
                special_params_dict[k] = v
                keys_to_pop.append(k)

        # Pop the keys from the dictionary after iteration
        for k in keys_to_pop:
            optional_params.pop(k)
        if task == "conversational":
            inference_params = deepcopy(optional_params)
            inference_params.pop("details")
            inference_params.pop("return_full_text")
            past_user_inputs = []
            generated_responses = []
            text = ""
            for message in messages:
                if message["role"] == "user":
                    if text != "":
                        past_user_inputs.append(text)
                    text = convert_content_list_to_str(message)
                elif message["role"] == "assistant" or message["role"] == "system":
                    generated_responses.append(convert_content_list_to_str(message))
            data = {
                "inputs": {
                    "text": text,
                    "past_user_inputs": past_user_inputs,
                    "generated_responses": generated_responses,
                },
                "parameters": inference_params,
            }

        elif task == "text-generation-inference":
            # always send "details" and "return_full_text" as params
            if model in litellm.custom_prompt_dict:
                # check if the model has a registered custom prompt
                model_prompt_details = litellm.custom_prompt_dict[model]
                prompt = custom_prompt(
                    role_dict=model_prompt_details.get("roles", None),
                    initial_prompt_value=model_prompt_details.get(
                        "initial_prompt_value", ""
                    ),
                    final_prompt_value=model_prompt_details.get(
                        "final_prompt_value", ""
                    ),
                    messages=messages,
                )
            else:
                prompt = prompt_factory(model=model, messages=messages)
            data = {
                "inputs": prompt,  # type: ignore
                "parameters": optional_params,
                "stream": (  # type: ignore
                    True
                    if "stream" in optional_params
                    and isinstance(optional_params["stream"], bool)
                    and optional_params["stream"] is True  # type: ignore
                    else False
                ),
            }
        else:
            # Non TGI and Conversational llms
            # We need this branch, it removes 'details' and 'return_full_text' from params
            if model in litellm.custom_prompt_dict:
                # check if the model has a registered custom prompt
                model_prompt_details = litellm.custom_prompt_dict[model]
                prompt = custom_prompt(
                    role_dict=model_prompt_details.get("roles", {}),
                    initial_prompt_value=model_prompt_details.get(
                        "initial_prompt_value", ""
                    ),
                    final_prompt_value=model_prompt_details.get(
                        "final_prompt_value", ""
                    ),
                    bos_token=model_prompt_details.get("bos_token", ""),
                    eos_token=model_prompt_details.get("eos_token", ""),
                    messages=messages,
                )
            else:
                prompt = prompt_factory(model=model, messages=messages)
            inference_params = deepcopy(optional_params)
            inference_params.pop("details")
            inference_params.pop("return_full_text")
            data = {
                "inputs": prompt,  # type: ignore
            }
            if task == "text-generation-inference":
                data["parameters"] = inference_params
                data["stream"] = (  # type: ignore
                    True  # type: ignore
                    if "stream" in optional_params and optional_params["stream"] is True
                    else False
                )

        ### RE-ADD SPECIAL PARAMS
        if len(special_params_dict.keys()) > 0:
            data.update({"options": special_params_dict})

        return data

    def get_api_base(self, api_base: Optional[str], model: str) -> str:
        """
        Get the API base for the Huggingface API.

        Do not add the chat/embedding/rerank extension here. Let the handler do this.
        """
        if "https" in model:
            completion_url = model
        elif api_base is not None:
            completion_url = api_base
        elif "HF_API_BASE" in os.environ:
            completion_url = os.getenv("HF_API_BASE", "")
        elif "HUGGINGFACE_API_BASE" in os.environ:
            completion_url = os.getenv("HUGGINGFACE_API_BASE", "")
        else:
            completion_url = f"https://api-inference.huggingface.co/models/{model}"

        return completion_url

    def validate_environment(
        self,
        headers: Dict,
        model: str,
        messages: List[AllMessageValues],
        optional_params: Dict,
        api_key: Optional[str] = None,
        api_base: Optional[str] = None,
    ) -> Dict:
        default_headers = {
            "content-type": "application/json",
        }
        if api_key is not None:
            default_headers["Authorization"] = (
                f"Bearer {api_key}"  # Huggingface Inference Endpoint default is to accept bearer tokens
            )

        headers = {**headers, **default_headers}
        return headers

    def get_error_class(
        self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
    ) -> BaseLLMException:
        return HuggingfaceError(
            status_code=status_code, message=error_message, headers=headers
        )

    def _convert_streamed_response_to_complete_response(
        self,
        response: httpx.Response,
        logging_obj: LoggingClass,
        model: str,
        data: dict,
        api_key: Optional[str] = None,
    ) -> List[Dict[str, Any]]:
        streamed_response = CustomStreamWrapper(
            completion_stream=response.iter_lines(),
            model=model,
            custom_llm_provider="huggingface",
            logging_obj=logging_obj,
        )
        content = ""
        for chunk in streamed_response:
            content += chunk["choices"][0]["delta"]["content"]
        completion_response: List[Dict[str, Any]] = [{"generated_text": content}]
        ## LOGGING
        logging_obj.post_call(
            input=data,
            api_key=api_key,
            original_response=completion_response,
            additional_args={"complete_input_dict": data},
        )
        return completion_response

    def convert_to_model_response_object(  # noqa: PLR0915
        self,
        completion_response: Union[List[Dict[str, Any]], Dict[str, Any]],
        model_response: ModelResponse,
        task: Optional[hf_tasks],
        optional_params: dict,
        encoding: Any,
        messages: List[AllMessageValues],
        model: str,
    ):
        if task is None:
            task = "text-generation-inference"  # default to tgi

        if task == "conversational":
            if len(completion_response["generated_text"]) > 0:  # type: ignore
                model_response.choices[0].message.content = completion_response[  # type: ignore
                    "generated_text"
                ]
        elif task == "text-generation-inference":
            if (
                not isinstance(completion_response, list)
                or not isinstance(completion_response[0], dict)
                or "generated_text" not in completion_response[0]
            ):
                raise HuggingfaceError(
                    status_code=422,
                    message=f"response is not in expected format - {completion_response}",
                    headers=None,
                )

            if len(completion_response[0]["generated_text"]) > 0:
                model_response.choices[0].message.content = output_parser(  # type: ignore
                    completion_response[0]["generated_text"]
                )
            ## GETTING LOGPROBS + FINISH REASON
            if (
                "details" in completion_response[0]
                and "tokens" in completion_response[0]["details"]
            ):
                model_response.choices[0].finish_reason = completion_response[0][
                    "details"
                ]["finish_reason"]
                sum_logprob = 0
                for token in completion_response[0]["details"]["tokens"]:
                    if token["logprob"] is not None:
                        sum_logprob += token["logprob"]
                setattr(model_response.choices[0].message, "_logprob", sum_logprob)  # type: ignore
            if "best_of" in optional_params and optional_params["best_of"] > 1:
                if (
                    "details" in completion_response[0]
                    and "best_of_sequences" in completion_response[0]["details"]
                ):
                    choices_list = []
                    for idx, item in enumerate(
                        completion_response[0]["details"]["best_of_sequences"]
                    ):
                        sum_logprob = 0
                        for token in item["tokens"]:
                            if token["logprob"] is not None:
                                sum_logprob += token["logprob"]
                        if len(item["generated_text"]) > 0:
                            message_obj = Message(
                                content=output_parser(item["generated_text"]),
                                logprobs=sum_logprob,
                            )
                        else:
                            message_obj = Message(content=None)
                        choice_obj = Choices(
                            finish_reason=item["finish_reason"],
                            index=idx + 1,
                            message=message_obj,
                        )
                        choices_list.append(choice_obj)
                    model_response.choices.extend(choices_list)
        elif task == "text-classification":
            model_response.choices[0].message.content = json.dumps(  # type: ignore
                completion_response
            )
        else:
            if (
                isinstance(completion_response, list)
                and len(completion_response[0]["generated_text"]) > 0
            ):
                model_response.choices[0].message.content = output_parser(  # type: ignore
                    completion_response[0]["generated_text"]
                )
        ## CALCULATING USAGE
        prompt_tokens = 0
        try:
            prompt_tokens = token_counter(model=model, messages=messages)
        except Exception:
            # this should remain non blocking we should not block a response returning if calculating usage fails
            pass
        output_text = model_response["choices"][0]["message"].get("content", "")
        if output_text is not None and len(output_text) > 0:
            completion_tokens = 0
            try:
                completion_tokens = len(
                    encoding.encode(
                        model_response["choices"][0]["message"].get("content", "")
                    )
                )  ##[TODO] use the llama2 tokenizer here
            except Exception:
                # this should remain non blocking we should not block a response returning if calculating usage fails
                pass
        else:
            completion_tokens = 0

        model_response.created = int(time.time())
        model_response.model = model
        usage = Usage(
            prompt_tokens=prompt_tokens,
            completion_tokens=completion_tokens,
            total_tokens=prompt_tokens + completion_tokens,
        )
        setattr(model_response, "usage", usage)
        model_response._hidden_params["original_response"] = completion_response
        return model_response

    def transform_response(
        self,
        model: str,
        raw_response: httpx.Response,
        model_response: ModelResponse,
        logging_obj: LoggingClass,
        request_data: Dict,
        messages: List[AllMessageValues],
        optional_params: Dict,
        litellm_params: Dict,
        encoding: Any,
        api_key: Optional[str] = None,
        json_mode: Optional[bool] = None,
    ) -> ModelResponse:
        ## Some servers might return streaming responses even though stream was not set to true. (e.g. Baseten)
        task = litellm_params.get("task", None)
        is_streamed = False
        if (
            raw_response.__dict__["headers"].get("Content-Type", "")
            == "text/event-stream"
        ):
            is_streamed = True

        # iterate over the complete streamed response, and return the final answer
        if is_streamed:
            completion_response = self._convert_streamed_response_to_complete_response(
                response=raw_response,
                logging_obj=logging_obj,
                model=model,
                data=request_data,
                api_key=api_key,
            )
        else:
            ## LOGGING
            logging_obj.post_call(
                input=request_data,
                api_key=api_key,
                original_response=raw_response.text,
                additional_args={"complete_input_dict": request_data},
            )
            ## RESPONSE OBJECT
            try:
                completion_response = raw_response.json()
                if isinstance(completion_response, dict):
                    completion_response = [completion_response]
            except Exception:
                raise HuggingfaceError(
                    message=f"Original Response received: {raw_response.text}",
                    status_code=raw_response.status_code,
                )

        if isinstance(completion_response, dict) and "error" in completion_response:
            raise HuggingfaceError(
                message=completion_response["error"],  # type: ignore
                status_code=raw_response.status_code,
            )
        return self.convert_to_model_response_object(
            completion_response=completion_response,
            model_response=model_response,
            task=task if task is not None and task in hf_task_list else None,
            optional_params=optional_params,
            encoding=encoding,
            messages=messages,
            model=model,
        )