|
from typing import Dict, List, Optional |
|
|
|
import litellm |
|
from litellm.litellm_core_utils.prompt_templates.factory import ( |
|
convert_generic_image_chunk_to_openai_image_obj, |
|
convert_to_anthropic_image_obj, |
|
) |
|
from litellm.types.llms.openai import AllMessageValues |
|
from litellm.types.llms.vertex_ai import ContentType, PartType |
|
|
|
from ...vertex_ai.gemini.transformation import _gemini_convert_messages_with_history |
|
from ...vertex_ai.gemini.vertex_and_google_ai_studio_gemini import VertexGeminiConfig |
|
|
|
|
|
class GoogleAIStudioGeminiConfig(VertexGeminiConfig): |
|
""" |
|
Reference: https://ai.google.dev/api/rest/v1beta/GenerationConfig |
|
|
|
The class `GoogleAIStudioGeminiConfig` provides configuration for the Google AI Studio's Gemini API interface. Below are the parameters: |
|
|
|
- `temperature` (float): This controls the degree of randomness in token selection. |
|
|
|
- `max_output_tokens` (integer): This sets the limitation for the maximum amount of token in the text output. In this case, the default value is 256. |
|
|
|
- `top_p` (float): The tokens are selected from the most probable to the least probable until the sum of their probabilities equals the `top_p` value. Default is 0.95. |
|
|
|
- `top_k` (integer): The value of `top_k` determines how many of the most probable tokens are considered in the selection. For example, a `top_k` of 1 means the selected token is the most probable among all tokens. The default value is 40. |
|
|
|
- `response_mime_type` (str): The MIME type of the response. The default value is 'text/plain'. Other values - `application/json`. |
|
|
|
- `response_schema` (dict): Optional. Output response schema of the generated candidate text when response mime type can have schema. Schema can be objects, primitives or arrays and is a subset of OpenAPI schema. If set, a compatible response_mime_type must also be set. Compatible mimetypes: application/json: Schema for JSON response. |
|
|
|
- `candidate_count` (int): Number of generated responses to return. |
|
|
|
- `stop_sequences` (List[str]): The set of character sequences (up to 5) that will stop output generation. If specified, the API will stop at the first appearance of a stop sequence. The stop sequence will not be included as part of the response. |
|
|
|
Note: Please make sure to modify the default parameters as required for your use case. |
|
""" |
|
|
|
temperature: Optional[float] = None |
|
max_output_tokens: Optional[int] = None |
|
top_p: Optional[float] = None |
|
top_k: Optional[int] = None |
|
response_mime_type: Optional[str] = None |
|
response_schema: Optional[dict] = None |
|
candidate_count: Optional[int] = None |
|
stop_sequences: Optional[list] = None |
|
|
|
def __init__( |
|
self, |
|
temperature: Optional[float] = None, |
|
max_output_tokens: Optional[int] = None, |
|
top_p: Optional[float] = None, |
|
top_k: Optional[int] = None, |
|
response_mime_type: Optional[str] = None, |
|
response_schema: Optional[dict] = None, |
|
candidate_count: Optional[int] = None, |
|
stop_sequences: Optional[list] = None, |
|
) -> None: |
|
locals_ = locals() |
|
for key, value in locals_.items(): |
|
if key != "self" and value is not None: |
|
setattr(self.__class__, key, value) |
|
|
|
@classmethod |
|
def get_config(cls): |
|
return super().get_config() |
|
|
|
def get_supported_openai_params(self, model: str) -> List[str]: |
|
return [ |
|
"temperature", |
|
"top_p", |
|
"max_tokens", |
|
"max_completion_tokens", |
|
"stream", |
|
"tools", |
|
"tool_choice", |
|
"functions", |
|
"response_format", |
|
"n", |
|
"stop", |
|
"logprobs", |
|
"frequency_penalty", |
|
] |
|
|
|
def map_openai_params( |
|
self, |
|
non_default_params: Dict, |
|
optional_params: Dict, |
|
model: str, |
|
drop_params: bool, |
|
) -> Dict: |
|
|
|
if litellm.vertex_ai_safety_settings is not None: |
|
optional_params["safety_settings"] = litellm.vertex_ai_safety_settings |
|
return super().map_openai_params( |
|
model=model, |
|
non_default_params=non_default_params, |
|
optional_params=optional_params, |
|
drop_params=drop_params, |
|
) |
|
|
|
def _transform_messages( |
|
self, messages: List[AllMessageValues] |
|
) -> List[ContentType]: |
|
""" |
|
Google AI Studio Gemini does not support image urls in messages. |
|
""" |
|
for message in messages: |
|
_message_content = message.get("content") |
|
if _message_content is not None and isinstance(_message_content, list): |
|
_parts: List[PartType] = [] |
|
for element in _message_content: |
|
if element.get("type") == "image_url": |
|
img_element = element |
|
_image_url: Optional[str] = None |
|
if isinstance(img_element.get("image_url"), dict): |
|
_image_url = img_element["image_url"].get("url") |
|
else: |
|
_image_url = img_element.get("image_url") |
|
if _image_url and "https://" in _image_url: |
|
image_obj = convert_to_anthropic_image_obj(_image_url) |
|
img_element["image_url"] = ( |
|
convert_generic_image_chunk_to_openai_image_obj( |
|
image_obj |
|
) |
|
) |
|
return _gemini_convert_messages_with_history(messages=messages) |
|
|