File size: 5,677 Bytes
e3278e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
from typing import Dict, List, Optional
import litellm
from litellm.litellm_core_utils.prompt_templates.factory import (
convert_generic_image_chunk_to_openai_image_obj,
convert_to_anthropic_image_obj,
)
from litellm.types.llms.openai import AllMessageValues
from litellm.types.llms.vertex_ai import ContentType, PartType
from ...vertex_ai.gemini.transformation import _gemini_convert_messages_with_history
from ...vertex_ai.gemini.vertex_and_google_ai_studio_gemini import VertexGeminiConfig
class GoogleAIStudioGeminiConfig(VertexGeminiConfig):
"""
Reference: https://ai.google.dev/api/rest/v1beta/GenerationConfig
The class `GoogleAIStudioGeminiConfig` provides configuration for the Google AI Studio's Gemini API interface. Below are the parameters:
- `temperature` (float): This controls the degree of randomness in token selection.
- `max_output_tokens` (integer): This sets the limitation for the maximum amount of token in the text output. In this case, the default value is 256.
- `top_p` (float): The tokens are selected from the most probable to the least probable until the sum of their probabilities equals the `top_p` value. Default is 0.95.
- `top_k` (integer): The value of `top_k` determines how many of the most probable tokens are considered in the selection. For example, a `top_k` of 1 means the selected token is the most probable among all tokens. The default value is 40.
- `response_mime_type` (str): The MIME type of the response. The default value is 'text/plain'. Other values - `application/json`.
- `response_schema` (dict): Optional. Output response schema of the generated candidate text when response mime type can have schema. Schema can be objects, primitives or arrays and is a subset of OpenAPI schema. If set, a compatible response_mime_type must also be set. Compatible mimetypes: application/json: Schema for JSON response.
- `candidate_count` (int): Number of generated responses to return.
- `stop_sequences` (List[str]): The set of character sequences (up to 5) that will stop output generation. If specified, the API will stop at the first appearance of a stop sequence. The stop sequence will not be included as part of the response.
Note: Please make sure to modify the default parameters as required for your use case.
"""
temperature: Optional[float] = None
max_output_tokens: Optional[int] = None
top_p: Optional[float] = None
top_k: Optional[int] = None
response_mime_type: Optional[str] = None
response_schema: Optional[dict] = None
candidate_count: Optional[int] = None
stop_sequences: Optional[list] = None
def __init__(
self,
temperature: Optional[float] = None,
max_output_tokens: Optional[int] = None,
top_p: Optional[float] = None,
top_k: Optional[int] = None,
response_mime_type: Optional[str] = None,
response_schema: Optional[dict] = None,
candidate_count: Optional[int] = None,
stop_sequences: Optional[list] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return super().get_config()
def get_supported_openai_params(self, model: str) -> List[str]:
return [
"temperature",
"top_p",
"max_tokens",
"max_completion_tokens",
"stream",
"tools",
"tool_choice",
"functions",
"response_format",
"n",
"stop",
"logprobs",
"frequency_penalty",
]
def map_openai_params(
self,
non_default_params: Dict,
optional_params: Dict,
model: str,
drop_params: bool,
) -> Dict:
if litellm.vertex_ai_safety_settings is not None:
optional_params["safety_settings"] = litellm.vertex_ai_safety_settings
return super().map_openai_params(
model=model,
non_default_params=non_default_params,
optional_params=optional_params,
drop_params=drop_params,
)
def _transform_messages(
self, messages: List[AllMessageValues]
) -> List[ContentType]:
"""
Google AI Studio Gemini does not support image urls in messages.
"""
for message in messages:
_message_content = message.get("content")
if _message_content is not None and isinstance(_message_content, list):
_parts: List[PartType] = []
for element in _message_content:
if element.get("type") == "image_url":
img_element = element
_image_url: Optional[str] = None
if isinstance(img_element.get("image_url"), dict):
_image_url = img_element["image_url"].get("url") # type: ignore
else:
_image_url = img_element.get("image_url") # type: ignore
if _image_url and "https://" in _image_url:
image_obj = convert_to_anthropic_image_obj(_image_url)
img_element["image_url"] = ( # type: ignore
convert_generic_image_chunk_to_openai_image_obj(
image_obj
)
)
return _gemini_convert_messages_with_history(messages=messages)
|