Raju2024's picture
Upload 1072 files
e3278e4 verified
raw
history blame
9.49 kB
from typing import List, Literal, Optional, Tuple, Union, cast
import litellm
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.openai import AllMessageValues, ChatCompletionImageObject
from litellm.types.utils import ProviderSpecificModelInfo
from ...openai.chat.gpt_transformation import OpenAIGPTConfig
class FireworksAIConfig(OpenAIGPTConfig):
"""
Reference: https://docs.fireworks.ai/api-reference/post-chatcompletions
The class `FireworksAIConfig` provides configuration for the Fireworks's Chat Completions API interface. Below are the parameters:
"""
tools: Optional[list] = None
tool_choice: Optional[Union[str, dict]] = None
max_tokens: Optional[int] = None
temperature: Optional[int] = None
top_p: Optional[int] = None
top_k: Optional[int] = None
frequency_penalty: Optional[int] = None
presence_penalty: Optional[int] = None
n: Optional[int] = None
stop: Optional[Union[str, list]] = None
response_format: Optional[dict] = None
user: Optional[str] = None
logprobs: Optional[int] = None
# Non OpenAI parameters - Fireworks AI only params
prompt_truncate_length: Optional[int] = None
context_length_exceeded_behavior: Optional[Literal["error", "truncate"]] = None
def __init__(
self,
tools: Optional[list] = None,
tool_choice: Optional[Union[str, dict]] = None,
max_tokens: Optional[int] = None,
temperature: Optional[int] = None,
top_p: Optional[int] = None,
top_k: Optional[int] = None,
frequency_penalty: Optional[int] = None,
presence_penalty: Optional[int] = None,
n: Optional[int] = None,
stop: Optional[Union[str, list]] = None,
response_format: Optional[dict] = None,
user: Optional[str] = None,
logprobs: Optional[int] = None,
prompt_truncate_length: Optional[int] = None,
context_length_exceeded_behavior: Optional[Literal["error", "truncate"]] = None,
) -> None:
locals_ = locals().copy()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return super().get_config()
def get_supported_openai_params(self, model: str):
return [
"stream",
"tools",
"tool_choice",
"max_completion_tokens",
"max_tokens",
"temperature",
"top_p",
"top_k",
"frequency_penalty",
"presence_penalty",
"n",
"stop",
"response_format",
"user",
"logprobs",
"prompt_truncate_length",
"context_length_exceeded_behavior",
]
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
drop_params: bool,
) -> dict:
supported_openai_params = self.get_supported_openai_params(model=model)
for param, value in non_default_params.items():
if param == "tool_choice":
if value == "required":
# relevant issue: https://github.com/BerriAI/litellm/issues/4416
optional_params["tool_choice"] = "any"
else:
# pass through the value of tool choice
optional_params["tool_choice"] = value
elif (
param == "response_format" and value.get("type", None) == "json_schema"
):
optional_params["response_format"] = {
"type": "json_object",
"schema": value["json_schema"]["schema"],
}
elif param == "max_completion_tokens":
optional_params["max_tokens"] = value
elif param in supported_openai_params:
if value is not None:
optional_params[param] = value
return optional_params
def _add_transform_inline_image_block(
self,
content: ChatCompletionImageObject,
model: str,
disable_add_transform_inline_image_block: Optional[bool],
) -> ChatCompletionImageObject:
"""
Add transform_inline to the image_url (allows non-vision models to parse documents/images/etc.)
- ignore if model is a vision model
- ignore if user has disabled this feature
"""
if (
"vision" in model or disable_add_transform_inline_image_block
): # allow user to toggle this feature.
return content
if isinstance(content["image_url"], str):
content["image_url"] = f"{content['image_url']}#transform=inline"
elif isinstance(content["image_url"], dict):
content["image_url"][
"url"
] = f"{content['image_url']['url']}#transform=inline"
return content
def _transform_messages_helper(
self, messages: List[AllMessageValues], model: str, litellm_params: dict
) -> List[AllMessageValues]:
"""
Add 'transform=inline' to the url of the image_url
"""
disable_add_transform_inline_image_block = cast(
Optional[bool],
litellm_params.get("disable_add_transform_inline_image_block")
or litellm.disable_add_transform_inline_image_block,
)
for message in messages:
if message["role"] == "user":
_message_content = message.get("content")
if _message_content is not None and isinstance(_message_content, list):
for content in _message_content:
if content["type"] == "image_url":
content = self._add_transform_inline_image_block(
content=content,
model=model,
disable_add_transform_inline_image_block=disable_add_transform_inline_image_block,
)
return messages
def get_provider_info(self, model: str) -> ProviderSpecificModelInfo:
provider_specific_model_info = ProviderSpecificModelInfo(
supports_function_calling=True,
supports_prompt_caching=True, # https://docs.fireworks.ai/guides/prompt-caching
supports_pdf_input=True, # via document inlining
supports_vision=True, # via document inlining
)
return provider_specific_model_info
def transform_request(
self,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
headers: dict,
) -> dict:
if not model.startswith("accounts/"):
model = f"accounts/fireworks/models/{model}"
messages = self._transform_messages_helper(
messages=messages, model=model, litellm_params=litellm_params
)
return super().transform_request(
model=model,
messages=messages,
optional_params=optional_params,
litellm_params=litellm_params,
headers=headers,
)
def _get_openai_compatible_provider_info(
self, api_base: Optional[str], api_key: Optional[str]
) -> Tuple[Optional[str], Optional[str]]:
api_base = (
api_base
or get_secret_str("FIREWORKS_API_BASE")
or "https://api.fireworks.ai/inference/v1"
) # type: ignore
dynamic_api_key = api_key or (
get_secret_str("FIREWORKS_API_KEY")
or get_secret_str("FIREWORKS_AI_API_KEY")
or get_secret_str("FIREWORKSAI_API_KEY")
or get_secret_str("FIREWORKS_AI_TOKEN")
)
return api_base, dynamic_api_key
def get_models(self, api_key: Optional[str] = None, api_base: Optional[str] = None):
api_base, api_key = self._get_openai_compatible_provider_info(
api_base=api_base, api_key=api_key
)
if api_base is None or api_key is None:
raise ValueError(
"FIREWORKS_API_BASE or FIREWORKS_API_KEY is not set. Please set the environment variable, to query Fireworks AI's `/models` endpoint."
)
account_id = get_secret_str("FIREWORKS_ACCOUNT_ID")
if account_id is None:
raise ValueError(
"FIREWORKS_ACCOUNT_ID is not set. Please set the environment variable, to query Fireworks AI's `/models` endpoint."
)
response = litellm.module_level_client.get(
url=f"{api_base}/v1/accounts/{account_id}/models",
headers={"Authorization": f"Bearer {api_key}"},
)
if response.status_code != 200:
raise ValueError(
f"Failed to fetch models from Fireworks AI. Status code: {response.status_code}, Response: {response.json()}"
)
models = response.json()["models"]
return ["fireworks_ai/" + model["name"] for model in models]
@staticmethod
def get_api_key(api_key: Optional[str] = None) -> Optional[str]:
return api_key or (
get_secret_str("FIREWORKS_API_KEY")
or get_secret_str("FIREWORKS_AI_API_KEY")
or get_secret_str("FIREWORKSAI_API_KEY")
or get_secret_str("FIREWORKS_AI_TOKEN")
)