File size: 9,492 Bytes
e3278e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
from typing import List, Literal, Optional, Tuple, Union, cast
import litellm
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.openai import AllMessageValues, ChatCompletionImageObject
from litellm.types.utils import ProviderSpecificModelInfo
from ...openai.chat.gpt_transformation import OpenAIGPTConfig
class FireworksAIConfig(OpenAIGPTConfig):
"""
Reference: https://docs.fireworks.ai/api-reference/post-chatcompletions
The class `FireworksAIConfig` provides configuration for the Fireworks's Chat Completions API interface. Below are the parameters:
"""
tools: Optional[list] = None
tool_choice: Optional[Union[str, dict]] = None
max_tokens: Optional[int] = None
temperature: Optional[int] = None
top_p: Optional[int] = None
top_k: Optional[int] = None
frequency_penalty: Optional[int] = None
presence_penalty: Optional[int] = None
n: Optional[int] = None
stop: Optional[Union[str, list]] = None
response_format: Optional[dict] = None
user: Optional[str] = None
logprobs: Optional[int] = None
# Non OpenAI parameters - Fireworks AI only params
prompt_truncate_length: Optional[int] = None
context_length_exceeded_behavior: Optional[Literal["error", "truncate"]] = None
def __init__(
self,
tools: Optional[list] = None,
tool_choice: Optional[Union[str, dict]] = None,
max_tokens: Optional[int] = None,
temperature: Optional[int] = None,
top_p: Optional[int] = None,
top_k: Optional[int] = None,
frequency_penalty: Optional[int] = None,
presence_penalty: Optional[int] = None,
n: Optional[int] = None,
stop: Optional[Union[str, list]] = None,
response_format: Optional[dict] = None,
user: Optional[str] = None,
logprobs: Optional[int] = None,
prompt_truncate_length: Optional[int] = None,
context_length_exceeded_behavior: Optional[Literal["error", "truncate"]] = None,
) -> None:
locals_ = locals().copy()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return super().get_config()
def get_supported_openai_params(self, model: str):
return [
"stream",
"tools",
"tool_choice",
"max_completion_tokens",
"max_tokens",
"temperature",
"top_p",
"top_k",
"frequency_penalty",
"presence_penalty",
"n",
"stop",
"response_format",
"user",
"logprobs",
"prompt_truncate_length",
"context_length_exceeded_behavior",
]
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
drop_params: bool,
) -> dict:
supported_openai_params = self.get_supported_openai_params(model=model)
for param, value in non_default_params.items():
if param == "tool_choice":
if value == "required":
# relevant issue: https://github.com/BerriAI/litellm/issues/4416
optional_params["tool_choice"] = "any"
else:
# pass through the value of tool choice
optional_params["tool_choice"] = value
elif (
param == "response_format" and value.get("type", None) == "json_schema"
):
optional_params["response_format"] = {
"type": "json_object",
"schema": value["json_schema"]["schema"],
}
elif param == "max_completion_tokens":
optional_params["max_tokens"] = value
elif param in supported_openai_params:
if value is not None:
optional_params[param] = value
return optional_params
def _add_transform_inline_image_block(
self,
content: ChatCompletionImageObject,
model: str,
disable_add_transform_inline_image_block: Optional[bool],
) -> ChatCompletionImageObject:
"""
Add transform_inline to the image_url (allows non-vision models to parse documents/images/etc.)
- ignore if model is a vision model
- ignore if user has disabled this feature
"""
if (
"vision" in model or disable_add_transform_inline_image_block
): # allow user to toggle this feature.
return content
if isinstance(content["image_url"], str):
content["image_url"] = f"{content['image_url']}#transform=inline"
elif isinstance(content["image_url"], dict):
content["image_url"][
"url"
] = f"{content['image_url']['url']}#transform=inline"
return content
def _transform_messages_helper(
self, messages: List[AllMessageValues], model: str, litellm_params: dict
) -> List[AllMessageValues]:
"""
Add 'transform=inline' to the url of the image_url
"""
disable_add_transform_inline_image_block = cast(
Optional[bool],
litellm_params.get("disable_add_transform_inline_image_block")
or litellm.disable_add_transform_inline_image_block,
)
for message in messages:
if message["role"] == "user":
_message_content = message.get("content")
if _message_content is not None and isinstance(_message_content, list):
for content in _message_content:
if content["type"] == "image_url":
content = self._add_transform_inline_image_block(
content=content,
model=model,
disable_add_transform_inline_image_block=disable_add_transform_inline_image_block,
)
return messages
def get_provider_info(self, model: str) -> ProviderSpecificModelInfo:
provider_specific_model_info = ProviderSpecificModelInfo(
supports_function_calling=True,
supports_prompt_caching=True, # https://docs.fireworks.ai/guides/prompt-caching
supports_pdf_input=True, # via document inlining
supports_vision=True, # via document inlining
)
return provider_specific_model_info
def transform_request(
self,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
headers: dict,
) -> dict:
if not model.startswith("accounts/"):
model = f"accounts/fireworks/models/{model}"
messages = self._transform_messages_helper(
messages=messages, model=model, litellm_params=litellm_params
)
return super().transform_request(
model=model,
messages=messages,
optional_params=optional_params,
litellm_params=litellm_params,
headers=headers,
)
def _get_openai_compatible_provider_info(
self, api_base: Optional[str], api_key: Optional[str]
) -> Tuple[Optional[str], Optional[str]]:
api_base = (
api_base
or get_secret_str("FIREWORKS_API_BASE")
or "https://api.fireworks.ai/inference/v1"
) # type: ignore
dynamic_api_key = api_key or (
get_secret_str("FIREWORKS_API_KEY")
or get_secret_str("FIREWORKS_AI_API_KEY")
or get_secret_str("FIREWORKSAI_API_KEY")
or get_secret_str("FIREWORKS_AI_TOKEN")
)
return api_base, dynamic_api_key
def get_models(self, api_key: Optional[str] = None, api_base: Optional[str] = None):
api_base, api_key = self._get_openai_compatible_provider_info(
api_base=api_base, api_key=api_key
)
if api_base is None or api_key is None:
raise ValueError(
"FIREWORKS_API_BASE or FIREWORKS_API_KEY is not set. Please set the environment variable, to query Fireworks AI's `/models` endpoint."
)
account_id = get_secret_str("FIREWORKS_ACCOUNT_ID")
if account_id is None:
raise ValueError(
"FIREWORKS_ACCOUNT_ID is not set. Please set the environment variable, to query Fireworks AI's `/models` endpoint."
)
response = litellm.module_level_client.get(
url=f"{api_base}/v1/accounts/{account_id}/models",
headers={"Authorization": f"Bearer {api_key}"},
)
if response.status_code != 200:
raise ValueError(
f"Failed to fetch models from Fireworks AI. Status code: {response.status_code}, Response: {response.json()}"
)
models = response.json()["models"]
return ["fireworks_ai/" + model["name"] for model in models]
@staticmethod
def get_api_key(api_key: Optional[str] = None) -> Optional[str]:
return api_key or (
get_secret_str("FIREWORKS_API_KEY")
or get_secret_str("FIREWORKS_AI_API_KEY")
or get_secret_str("FIREWORKSAI_API_KEY")
or get_secret_str("FIREWORKS_AI_TOKEN")
)
|