TestLLM / litellm /llms /base_llm /base_utils.py
Raju2024's picture
Upload 1072 files
e3278e4 verified
raw
history blame
3.89 kB
"""
Utility functions for base LLM classes.
"""
import copy
from abc import ABC, abstractmethod
from typing import List, Optional, Type, Union
from openai.lib import _parsing, _pydantic
from pydantic import BaseModel
from litellm.types.llms.openai import AllMessageValues
from litellm.types.utils import ProviderSpecificModelInfo
class BaseLLMModelInfo(ABC):
def get_provider_info(
self,
model: str,
) -> Optional[ProviderSpecificModelInfo]:
return None
@abstractmethod
def get_models(self) -> List[str]:
pass
@staticmethod
@abstractmethod
def get_api_key(api_key: Optional[str] = None) -> Optional[str]:
pass
@staticmethod
@abstractmethod
def get_api_base(api_base: Optional[str] = None) -> Optional[str]:
pass
def _dict_to_response_format_helper(
response_format: dict, ref_template: Optional[str] = None
) -> dict:
if ref_template is not None and response_format.get("type") == "json_schema":
# Deep copy to avoid modifying original
modified_format = copy.deepcopy(response_format)
schema = modified_format["json_schema"]["schema"]
# Update all $ref values in the schema
def update_refs(schema):
stack = [(schema, [])]
visited = set()
while stack:
obj, path = stack.pop()
obj_id = id(obj)
if obj_id in visited:
continue
visited.add(obj_id)
if isinstance(obj, dict):
if "$ref" in obj:
ref_path = obj["$ref"]
model_name = ref_path.split("/")[-1]
obj["$ref"] = ref_template.format(model=model_name)
for k, v in obj.items():
if isinstance(v, (dict, list)):
stack.append((v, path + [k]))
elif isinstance(obj, list):
for i, item in enumerate(obj):
if isinstance(item, (dict, list)):
stack.append((item, path + [i]))
update_refs(schema)
return modified_format
return response_format
def type_to_response_format_param(
response_format: Optional[Union[Type[BaseModel], dict]],
ref_template: Optional[str] = None,
) -> Optional[dict]:
"""
Re-implementation of openai's 'type_to_response_format_param' function
Used for converting pydantic object to api schema.
"""
if response_format is None:
return None
if isinstance(response_format, dict):
return _dict_to_response_format_helper(response_format, ref_template)
# type checkers don't narrow the negation of a `TypeGuard` as it isn't
# a safe default behaviour but we know that at this point the `response_format`
# can only be a `type`
if not _parsing._completions.is_basemodel_type(response_format):
raise TypeError(f"Unsupported response_format type - {response_format}")
if ref_template is not None:
schema = response_format.model_json_schema(ref_template=ref_template)
else:
schema = _pydantic.to_strict_json_schema(response_format)
return {
"type": "json_schema",
"json_schema": {
"schema": schema,
"name": response_format.__name__,
"strict": True,
},
}
def map_developer_role_to_system_role(
messages: List[AllMessageValues],
) -> List[AllMessageValues]:
"""
Translate `developer` role to `system` role for non-OpenAI providers.
"""
new_messages: List[AllMessageValues] = []
for m in messages:
if m["role"] == "developer":
new_messages.append({"role": "system", "content": m["content"]})
else:
new_messages.append(m)
return new_messages