File size: 3,889 Bytes
e3278e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
"""
Utility functions for base LLM classes.
"""
import copy
from abc import ABC, abstractmethod
from typing import List, Optional, Type, Union
from openai.lib import _parsing, _pydantic
from pydantic import BaseModel
from litellm.types.llms.openai import AllMessageValues
from litellm.types.utils import ProviderSpecificModelInfo
class BaseLLMModelInfo(ABC):
def get_provider_info(
self,
model: str,
) -> Optional[ProviderSpecificModelInfo]:
return None
@abstractmethod
def get_models(self) -> List[str]:
pass
@staticmethod
@abstractmethod
def get_api_key(api_key: Optional[str] = None) -> Optional[str]:
pass
@staticmethod
@abstractmethod
def get_api_base(api_base: Optional[str] = None) -> Optional[str]:
pass
def _dict_to_response_format_helper(
response_format: dict, ref_template: Optional[str] = None
) -> dict:
if ref_template is not None and response_format.get("type") == "json_schema":
# Deep copy to avoid modifying original
modified_format = copy.deepcopy(response_format)
schema = modified_format["json_schema"]["schema"]
# Update all $ref values in the schema
def update_refs(schema):
stack = [(schema, [])]
visited = set()
while stack:
obj, path = stack.pop()
obj_id = id(obj)
if obj_id in visited:
continue
visited.add(obj_id)
if isinstance(obj, dict):
if "$ref" in obj:
ref_path = obj["$ref"]
model_name = ref_path.split("/")[-1]
obj["$ref"] = ref_template.format(model=model_name)
for k, v in obj.items():
if isinstance(v, (dict, list)):
stack.append((v, path + [k]))
elif isinstance(obj, list):
for i, item in enumerate(obj):
if isinstance(item, (dict, list)):
stack.append((item, path + [i]))
update_refs(schema)
return modified_format
return response_format
def type_to_response_format_param(
response_format: Optional[Union[Type[BaseModel], dict]],
ref_template: Optional[str] = None,
) -> Optional[dict]:
"""
Re-implementation of openai's 'type_to_response_format_param' function
Used for converting pydantic object to api schema.
"""
if response_format is None:
return None
if isinstance(response_format, dict):
return _dict_to_response_format_helper(response_format, ref_template)
# type checkers don't narrow the negation of a `TypeGuard` as it isn't
# a safe default behaviour but we know that at this point the `response_format`
# can only be a `type`
if not _parsing._completions.is_basemodel_type(response_format):
raise TypeError(f"Unsupported response_format type - {response_format}")
if ref_template is not None:
schema = response_format.model_json_schema(ref_template=ref_template)
else:
schema = _pydantic.to_strict_json_schema(response_format)
return {
"type": "json_schema",
"json_schema": {
"schema": schema,
"name": response_format.__name__,
"strict": True,
},
}
def map_developer_role_to_system_role(
messages: List[AllMessageValues],
) -> List[AllMessageValues]:
"""
Translate `developer` role to `system` role for non-OpenAI providers.
"""
new_messages: List[AllMessageValues] = []
for m in messages:
if m["role"] == "developer":
new_messages.append({"role": "system", "content": m["content"]})
else:
new_messages.append(m)
return new_messages
|