|
|
|
|
|
import os |
|
import traceback |
|
|
|
import litellm |
|
|
|
|
|
class HeliconeLogger: |
|
|
|
helicone_model_list = [ |
|
"gpt", |
|
"claude", |
|
"command-r", |
|
"command-r-plus", |
|
"command-light", |
|
"command-medium", |
|
"command-medium-beta", |
|
"command-xlarge-nightly", |
|
"command-nightly", |
|
] |
|
|
|
def __init__(self): |
|
|
|
self.provider_url = "https://api.openai.com/v1" |
|
self.key = os.getenv("HELICONE_API_KEY") |
|
|
|
def claude_mapping(self, model, messages, response_obj): |
|
from anthropic import AI_PROMPT, HUMAN_PROMPT |
|
|
|
prompt = f"{HUMAN_PROMPT}" |
|
for message in messages: |
|
if "role" in message: |
|
if message["role"] == "user": |
|
prompt += f"{HUMAN_PROMPT}{message['content']}" |
|
else: |
|
prompt += f"{AI_PROMPT}{message['content']}" |
|
else: |
|
prompt += f"{HUMAN_PROMPT}{message['content']}" |
|
prompt += f"{AI_PROMPT}" |
|
|
|
choice = response_obj["choices"][0] |
|
message = choice["message"] |
|
|
|
content = [] |
|
if "tool_calls" in message and message["tool_calls"]: |
|
for tool_call in message["tool_calls"]: |
|
content.append( |
|
{ |
|
"type": "tool_use", |
|
"id": tool_call["id"], |
|
"name": tool_call["function"]["name"], |
|
"input": tool_call["function"]["arguments"], |
|
} |
|
) |
|
elif "content" in message and message["content"]: |
|
content = [{"type": "text", "text": message["content"]}] |
|
|
|
claude_response_obj = { |
|
"id": response_obj["id"], |
|
"type": "message", |
|
"role": "assistant", |
|
"model": model, |
|
"content": content, |
|
"stop_reason": choice["finish_reason"], |
|
"stop_sequence": None, |
|
"usage": { |
|
"input_tokens": response_obj["usage"]["prompt_tokens"], |
|
"output_tokens": response_obj["usage"]["completion_tokens"], |
|
}, |
|
} |
|
|
|
return claude_response_obj |
|
|
|
@staticmethod |
|
def add_metadata_from_header(litellm_params: dict, metadata: dict) -> dict: |
|
""" |
|
Adds metadata from proxy request headers to Helicone logging if keys start with "helicone_" |
|
and overwrites litellm_params.metadata if already included. |
|
|
|
For example if you want to add custom property to your request, send |
|
`headers: { ..., helicone-property-something: 1234 }` via proxy request. |
|
""" |
|
if litellm_params is None: |
|
return metadata |
|
|
|
if litellm_params.get("proxy_server_request") is None: |
|
return metadata |
|
|
|
if metadata is None: |
|
metadata = {} |
|
|
|
proxy_headers = ( |
|
litellm_params.get("proxy_server_request", {}).get("headers", {}) or {} |
|
) |
|
|
|
for header_key in proxy_headers: |
|
if header_key.startswith("helicone_"): |
|
metadata[header_key] = proxy_headers.get(header_key) |
|
|
|
return metadata |
|
|
|
def log_success( |
|
self, model, messages, response_obj, start_time, end_time, print_verbose, kwargs |
|
): |
|
|
|
try: |
|
print_verbose( |
|
f"Helicone Logging - Enters logging function for model {model}" |
|
) |
|
litellm_params = kwargs.get("litellm_params", {}) |
|
kwargs.get("litellm_call_id", None) |
|
metadata = litellm_params.get("metadata", {}) or {} |
|
metadata = self.add_metadata_from_header(litellm_params, metadata) |
|
model = ( |
|
model |
|
if any( |
|
accepted_model in model |
|
for accepted_model in self.helicone_model_list |
|
) |
|
else "gpt-3.5-turbo" |
|
) |
|
provider_request = {"model": model, "messages": messages} |
|
if isinstance(response_obj, litellm.EmbeddingResponse) or isinstance( |
|
response_obj, litellm.ModelResponse |
|
): |
|
response_obj = response_obj.json() |
|
|
|
if "claude" in model: |
|
response_obj = self.claude_mapping( |
|
model=model, messages=messages, response_obj=response_obj |
|
) |
|
|
|
providerResponse = { |
|
"json": response_obj, |
|
"headers": {"openai-version": "2020-10-01"}, |
|
"status": 200, |
|
} |
|
|
|
|
|
provider_url = self.provider_url |
|
url = "https://api.hconeai.com/oai/v1/log" |
|
if "claude" in model: |
|
url = "https://api.hconeai.com/anthropic/v1/log" |
|
provider_url = "https://api.anthropic.com/v1/messages" |
|
headers = { |
|
"Authorization": f"Bearer {self.key}", |
|
"Content-Type": "application/json", |
|
} |
|
start_time_seconds = int(start_time.timestamp()) |
|
start_time_milliseconds = int( |
|
(start_time.timestamp() - start_time_seconds) * 1000 |
|
) |
|
end_time_seconds = int(end_time.timestamp()) |
|
end_time_milliseconds = int( |
|
(end_time.timestamp() - end_time_seconds) * 1000 |
|
) |
|
meta = {"Helicone-Auth": f"Bearer {self.key}"} |
|
meta.update(metadata) |
|
data = { |
|
"providerRequest": { |
|
"url": provider_url, |
|
"json": provider_request, |
|
"meta": meta, |
|
}, |
|
"providerResponse": providerResponse, |
|
"timing": { |
|
"startTime": { |
|
"seconds": start_time_seconds, |
|
"milliseconds": start_time_milliseconds, |
|
}, |
|
"endTime": { |
|
"seconds": end_time_seconds, |
|
"milliseconds": end_time_milliseconds, |
|
}, |
|
}, |
|
} |
|
response = litellm.module_level_client.post(url, headers=headers, json=data) |
|
if response.status_code == 200: |
|
print_verbose("Helicone Logging - Success!") |
|
else: |
|
print_verbose( |
|
f"Helicone Logging - Error Request was not successful. Status Code: {response.status_code}" |
|
) |
|
print_verbose(f"Helicone Logging - Error {response.text}") |
|
except Exception: |
|
print_verbose(f"Helicone Logging Error - {traceback.format_exc()}") |
|
pass |
|
|