File size: 6,857 Bytes
e3278e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
#### What this does ####
# On success, logs events to Helicone
import os
import traceback
import litellm
class HeliconeLogger:
# Class variables or attributes
helicone_model_list = [
"gpt",
"claude",
"command-r",
"command-r-plus",
"command-light",
"command-medium",
"command-medium-beta",
"command-xlarge-nightly",
"command-nightly",
]
def __init__(self):
# Instance variables
self.provider_url = "https://api.openai.com/v1"
self.key = os.getenv("HELICONE_API_KEY")
def claude_mapping(self, model, messages, response_obj):
from anthropic import AI_PROMPT, HUMAN_PROMPT
prompt = f"{HUMAN_PROMPT}"
for message in messages:
if "role" in message:
if message["role"] == "user":
prompt += f"{HUMAN_PROMPT}{message['content']}"
else:
prompt += f"{AI_PROMPT}{message['content']}"
else:
prompt += f"{HUMAN_PROMPT}{message['content']}"
prompt += f"{AI_PROMPT}"
choice = response_obj["choices"][0]
message = choice["message"]
content = []
if "tool_calls" in message and message["tool_calls"]:
for tool_call in message["tool_calls"]:
content.append(
{
"type": "tool_use",
"id": tool_call["id"],
"name": tool_call["function"]["name"],
"input": tool_call["function"]["arguments"],
}
)
elif "content" in message and message["content"]:
content = [{"type": "text", "text": message["content"]}]
claude_response_obj = {
"id": response_obj["id"],
"type": "message",
"role": "assistant",
"model": model,
"content": content,
"stop_reason": choice["finish_reason"],
"stop_sequence": None,
"usage": {
"input_tokens": response_obj["usage"]["prompt_tokens"],
"output_tokens": response_obj["usage"]["completion_tokens"],
},
}
return claude_response_obj
@staticmethod
def add_metadata_from_header(litellm_params: dict, metadata: dict) -> dict:
"""
Adds metadata from proxy request headers to Helicone logging if keys start with "helicone_"
and overwrites litellm_params.metadata if already included.
For example if you want to add custom property to your request, send
`headers: { ..., helicone-property-something: 1234 }` via proxy request.
"""
if litellm_params is None:
return metadata
if litellm_params.get("proxy_server_request") is None:
return metadata
if metadata is None:
metadata = {}
proxy_headers = (
litellm_params.get("proxy_server_request", {}).get("headers", {}) or {}
)
for header_key in proxy_headers:
if header_key.startswith("helicone_"):
metadata[header_key] = proxy_headers.get(header_key)
return metadata
def log_success(
self, model, messages, response_obj, start_time, end_time, print_verbose, kwargs
):
# Method definition
try:
print_verbose(
f"Helicone Logging - Enters logging function for model {model}"
)
litellm_params = kwargs.get("litellm_params", {})
kwargs.get("litellm_call_id", None)
metadata = litellm_params.get("metadata", {}) or {}
metadata = self.add_metadata_from_header(litellm_params, metadata)
model = (
model
if any(
accepted_model in model
for accepted_model in self.helicone_model_list
)
else "gpt-3.5-turbo"
)
provider_request = {"model": model, "messages": messages}
if isinstance(response_obj, litellm.EmbeddingResponse) or isinstance(
response_obj, litellm.ModelResponse
):
response_obj = response_obj.json()
if "claude" in model:
response_obj = self.claude_mapping(
model=model, messages=messages, response_obj=response_obj
)
providerResponse = {
"json": response_obj,
"headers": {"openai-version": "2020-10-01"},
"status": 200,
}
# Code to be executed
provider_url = self.provider_url
url = "https://api.hconeai.com/oai/v1/log"
if "claude" in model:
url = "https://api.hconeai.com/anthropic/v1/log"
provider_url = "https://api.anthropic.com/v1/messages"
headers = {
"Authorization": f"Bearer {self.key}",
"Content-Type": "application/json",
}
start_time_seconds = int(start_time.timestamp())
start_time_milliseconds = int(
(start_time.timestamp() - start_time_seconds) * 1000
)
end_time_seconds = int(end_time.timestamp())
end_time_milliseconds = int(
(end_time.timestamp() - end_time_seconds) * 1000
)
meta = {"Helicone-Auth": f"Bearer {self.key}"}
meta.update(metadata)
data = {
"providerRequest": {
"url": provider_url,
"json": provider_request,
"meta": meta,
},
"providerResponse": providerResponse,
"timing": {
"startTime": {
"seconds": start_time_seconds,
"milliseconds": start_time_milliseconds,
},
"endTime": {
"seconds": end_time_seconds,
"milliseconds": end_time_milliseconds,
},
}, # {"seconds": .., "milliseconds": ..}
}
response = litellm.module_level_client.post(url, headers=headers, json=data)
if response.status_code == 200:
print_verbose("Helicone Logging - Success!")
else:
print_verbose(
f"Helicone Logging - Error Request was not successful. Status Code: {response.status_code}"
)
print_verbose(f"Helicone Logging - Error {response.text}")
except Exception:
print_verbose(f"Helicone Logging Error - {traceback.format_exc()}")
pass
|