|
""" |
|
Main File for Fine Tuning API implementation |
|
|
|
https://platform.openai.com/docs/api-reference/fine-tuning |
|
|
|
- fine_tuning.jobs.create() |
|
- fine_tuning.jobs.list() |
|
- client.fine_tuning.jobs.list_events() |
|
""" |
|
|
|
import asyncio |
|
import contextvars |
|
import os |
|
from functools import partial |
|
from typing import Any, Coroutine, Dict, Literal, Optional, Union |
|
|
|
import httpx |
|
|
|
import litellm |
|
from litellm._logging import verbose_logger |
|
from litellm.llms.azure.fine_tuning.handler import AzureOpenAIFineTuningAPI |
|
from litellm.llms.openai.fine_tuning.handler import OpenAIFineTuningAPI |
|
from litellm.llms.vertex_ai.fine_tuning.handler import VertexFineTuningAPI |
|
from litellm.secret_managers.main import get_secret_str |
|
from litellm.types.llms.openai import ( |
|
FineTuningJob, |
|
FineTuningJobCreate, |
|
Hyperparameters, |
|
) |
|
from litellm.types.router import * |
|
from litellm.utils import client, supports_httpx_timeout |
|
|
|
|
|
openai_fine_tuning_apis_instance = OpenAIFineTuningAPI() |
|
azure_fine_tuning_apis_instance = AzureOpenAIFineTuningAPI() |
|
vertex_fine_tuning_apis_instance = VertexFineTuningAPI() |
|
|
|
|
|
|
|
@client |
|
async def acreate_fine_tuning_job( |
|
model: str, |
|
training_file: str, |
|
hyperparameters: Optional[dict] = {}, |
|
suffix: Optional[str] = None, |
|
validation_file: Optional[str] = None, |
|
integrations: Optional[List[str]] = None, |
|
seed: Optional[int] = None, |
|
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", |
|
extra_headers: Optional[Dict[str, str]] = None, |
|
extra_body: Optional[Dict[str, str]] = None, |
|
**kwargs, |
|
) -> FineTuningJob: |
|
""" |
|
Async: Creates and executes a batch from an uploaded file of request |
|
|
|
""" |
|
verbose_logger.debug( |
|
"inside acreate_fine_tuning_job model=%s and kwargs=%s", model, kwargs |
|
) |
|
try: |
|
loop = asyncio.get_event_loop() |
|
kwargs["acreate_fine_tuning_job"] = True |
|
|
|
|
|
func = partial( |
|
create_fine_tuning_job, |
|
model, |
|
training_file, |
|
hyperparameters, |
|
suffix, |
|
validation_file, |
|
integrations, |
|
seed, |
|
custom_llm_provider, |
|
extra_headers, |
|
extra_body, |
|
**kwargs, |
|
) |
|
|
|
|
|
ctx = contextvars.copy_context() |
|
func_with_context = partial(ctx.run, func) |
|
init_response = await loop.run_in_executor(None, func_with_context) |
|
if asyncio.iscoroutine(init_response): |
|
response = await init_response |
|
else: |
|
response = init_response |
|
return response |
|
except Exception as e: |
|
raise e |
|
|
|
|
|
@client |
|
def create_fine_tuning_job( |
|
model: str, |
|
training_file: str, |
|
hyperparameters: Optional[dict] = {}, |
|
suffix: Optional[str] = None, |
|
validation_file: Optional[str] = None, |
|
integrations: Optional[List[str]] = None, |
|
seed: Optional[int] = None, |
|
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", |
|
extra_headers: Optional[Dict[str, str]] = None, |
|
extra_body: Optional[Dict[str, str]] = None, |
|
**kwargs, |
|
) -> Union[FineTuningJob, Coroutine[Any, Any, FineTuningJob]]: |
|
""" |
|
Creates a fine-tuning job which begins the process of creating a new model from a given dataset. |
|
|
|
Response includes details of the enqueued job including job status and the name of the fine-tuned models once complete |
|
|
|
""" |
|
try: |
|
_is_async = kwargs.pop("acreate_fine_tuning_job", False) is True |
|
optional_params = GenericLiteLLMParams(**kwargs) |
|
|
|
|
|
hyperparameters = hyperparameters or {} |
|
_oai_hyperparameters: Hyperparameters = Hyperparameters( |
|
**hyperparameters |
|
) |
|
|
|
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600 |
|
|
|
|
|
if ( |
|
timeout is not None |
|
and isinstance(timeout, httpx.Timeout) |
|
and supports_httpx_timeout(custom_llm_provider) is False |
|
): |
|
read_timeout = timeout.read or 600 |
|
timeout = read_timeout |
|
elif timeout is not None and not isinstance(timeout, httpx.Timeout): |
|
timeout = float(timeout) |
|
elif timeout is None: |
|
timeout = 600.0 |
|
|
|
|
|
if custom_llm_provider == "openai": |
|
|
|
|
|
api_base = ( |
|
optional_params.api_base |
|
or litellm.api_base |
|
or os.getenv("OPENAI_API_BASE") |
|
or "https://api.openai.com/v1" |
|
) |
|
organization = ( |
|
optional_params.organization |
|
or litellm.organization |
|
or os.getenv("OPENAI_ORGANIZATION", None) |
|
or None |
|
) |
|
|
|
api_key = ( |
|
optional_params.api_key |
|
or litellm.api_key |
|
or litellm.openai_key |
|
or os.getenv("OPENAI_API_KEY") |
|
) |
|
|
|
create_fine_tuning_job_data = FineTuningJobCreate( |
|
model=model, |
|
training_file=training_file, |
|
hyperparameters=_oai_hyperparameters, |
|
suffix=suffix, |
|
validation_file=validation_file, |
|
integrations=integrations, |
|
seed=seed, |
|
) |
|
|
|
create_fine_tuning_job_data_dict = create_fine_tuning_job_data.model_dump( |
|
exclude_none=True |
|
) |
|
|
|
response = openai_fine_tuning_apis_instance.create_fine_tuning_job( |
|
api_base=api_base, |
|
api_key=api_key, |
|
api_version=optional_params.api_version, |
|
organization=organization, |
|
create_fine_tuning_job_data=create_fine_tuning_job_data_dict, |
|
timeout=timeout, |
|
max_retries=optional_params.max_retries, |
|
_is_async=_is_async, |
|
) |
|
|
|
elif custom_llm_provider == "azure": |
|
api_base = optional_params.api_base or litellm.api_base or get_secret_str("AZURE_API_BASE") |
|
|
|
api_version = ( |
|
optional_params.api_version |
|
or litellm.api_version |
|
or get_secret_str("AZURE_API_VERSION") |
|
) |
|
|
|
api_key = ( |
|
optional_params.api_key |
|
or litellm.api_key |
|
or litellm.azure_key |
|
or get_secret_str("AZURE_OPENAI_API_KEY") |
|
or get_secret_str("AZURE_API_KEY") |
|
) |
|
|
|
extra_body = optional_params.get("extra_body", {}) |
|
if extra_body is not None: |
|
extra_body.pop("azure_ad_token", None) |
|
else: |
|
get_secret_str("AZURE_AD_TOKEN") |
|
create_fine_tuning_job_data = FineTuningJobCreate( |
|
model=model, |
|
training_file=training_file, |
|
hyperparameters=_oai_hyperparameters, |
|
suffix=suffix, |
|
validation_file=validation_file, |
|
integrations=integrations, |
|
seed=seed, |
|
) |
|
|
|
create_fine_tuning_job_data_dict = create_fine_tuning_job_data.model_dump( |
|
exclude_none=True |
|
) |
|
|
|
response = azure_fine_tuning_apis_instance.create_fine_tuning_job( |
|
api_base=api_base, |
|
api_key=api_key, |
|
api_version=api_version, |
|
create_fine_tuning_job_data=create_fine_tuning_job_data_dict, |
|
timeout=timeout, |
|
max_retries=optional_params.max_retries, |
|
_is_async=_is_async, |
|
organization=optional_params.organization, |
|
) |
|
elif custom_llm_provider == "vertex_ai": |
|
api_base = optional_params.api_base or "" |
|
vertex_ai_project = ( |
|
optional_params.vertex_project |
|
or litellm.vertex_project |
|
or get_secret_str("VERTEXAI_PROJECT") |
|
) |
|
vertex_ai_location = ( |
|
optional_params.vertex_location |
|
or litellm.vertex_location |
|
or get_secret_str("VERTEXAI_LOCATION") |
|
) |
|
vertex_credentials = optional_params.vertex_credentials or get_secret_str( |
|
"VERTEXAI_CREDENTIALS" |
|
) |
|
create_fine_tuning_job_data = FineTuningJobCreate( |
|
model=model, |
|
training_file=training_file, |
|
hyperparameters=_oai_hyperparameters, |
|
suffix=suffix, |
|
validation_file=validation_file, |
|
integrations=integrations, |
|
seed=seed, |
|
) |
|
response = vertex_fine_tuning_apis_instance.create_fine_tuning_job( |
|
_is_async=_is_async, |
|
create_fine_tuning_job_data=create_fine_tuning_job_data, |
|
vertex_credentials=vertex_credentials, |
|
vertex_project=vertex_ai_project, |
|
vertex_location=vertex_ai_location, |
|
timeout=timeout, |
|
api_base=api_base, |
|
kwargs=kwargs, |
|
original_hyperparameters=hyperparameters, |
|
) |
|
else: |
|
raise litellm.exceptions.BadRequestError( |
|
message="LiteLLM doesn't support {} for 'create_batch'. Only 'openai' is supported.".format( |
|
custom_llm_provider |
|
), |
|
model="n/a", |
|
llm_provider=custom_llm_provider, |
|
response=httpx.Response( |
|
status_code=400, |
|
content="Unsupported provider", |
|
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), |
|
), |
|
) |
|
return response |
|
except Exception as e: |
|
verbose_logger.error("got exception in create_fine_tuning_job=%s", str(e)) |
|
raise e |
|
|
|
|
|
async def acancel_fine_tuning_job( |
|
fine_tuning_job_id: str, |
|
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", |
|
extra_headers: Optional[Dict[str, str]] = None, |
|
extra_body: Optional[Dict[str, str]] = None, |
|
**kwargs, |
|
) -> FineTuningJob: |
|
""" |
|
Async: Immediately cancel a fine-tune job. |
|
""" |
|
try: |
|
loop = asyncio.get_event_loop() |
|
kwargs["acancel_fine_tuning_job"] = True |
|
|
|
|
|
func = partial( |
|
cancel_fine_tuning_job, |
|
fine_tuning_job_id, |
|
custom_llm_provider, |
|
extra_headers, |
|
extra_body, |
|
**kwargs, |
|
) |
|
|
|
|
|
ctx = contextvars.copy_context() |
|
func_with_context = partial(ctx.run, func) |
|
init_response = await loop.run_in_executor(None, func_with_context) |
|
if asyncio.iscoroutine(init_response): |
|
response = await init_response |
|
else: |
|
response = init_response |
|
return response |
|
except Exception as e: |
|
raise e |
|
|
|
|
|
def cancel_fine_tuning_job( |
|
fine_tuning_job_id: str, |
|
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", |
|
extra_headers: Optional[Dict[str, str]] = None, |
|
extra_body: Optional[Dict[str, str]] = None, |
|
**kwargs, |
|
) -> Union[FineTuningJob, Coroutine[Any, Any, FineTuningJob]]: |
|
""" |
|
Immediately cancel a fine-tune job. |
|
|
|
Response includes details of the enqueued job including job status and the name of the fine-tuned models once complete |
|
|
|
""" |
|
try: |
|
optional_params = GenericLiteLLMParams(**kwargs) |
|
|
|
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600 |
|
|
|
|
|
if ( |
|
timeout is not None |
|
and isinstance(timeout, httpx.Timeout) |
|
and supports_httpx_timeout(custom_llm_provider) is False |
|
): |
|
read_timeout = timeout.read or 600 |
|
timeout = read_timeout |
|
elif timeout is not None and not isinstance(timeout, httpx.Timeout): |
|
timeout = float(timeout) |
|
elif timeout is None: |
|
timeout = 600.0 |
|
|
|
_is_async = kwargs.pop("acancel_fine_tuning_job", False) is True |
|
|
|
|
|
if custom_llm_provider == "openai": |
|
|
|
|
|
api_base = ( |
|
optional_params.api_base |
|
or litellm.api_base |
|
or os.getenv("OPENAI_API_BASE") |
|
or "https://api.openai.com/v1" |
|
) |
|
organization = ( |
|
optional_params.organization |
|
or litellm.organization |
|
or os.getenv("OPENAI_ORGANIZATION", None) |
|
or None |
|
) |
|
|
|
api_key = ( |
|
optional_params.api_key |
|
or litellm.api_key |
|
or litellm.openai_key |
|
or os.getenv("OPENAI_API_KEY") |
|
) |
|
|
|
response = openai_fine_tuning_apis_instance.cancel_fine_tuning_job( |
|
api_base=api_base, |
|
api_key=api_key, |
|
api_version=optional_params.api_version, |
|
organization=organization, |
|
fine_tuning_job_id=fine_tuning_job_id, |
|
timeout=timeout, |
|
max_retries=optional_params.max_retries, |
|
_is_async=_is_async, |
|
) |
|
|
|
elif custom_llm_provider == "azure": |
|
api_base = optional_params.api_base or litellm.api_base or get_secret("AZURE_API_BASE") |
|
|
|
api_version = ( |
|
optional_params.api_version |
|
or litellm.api_version |
|
or get_secret_str("AZURE_API_VERSION") |
|
) |
|
|
|
api_key = ( |
|
optional_params.api_key |
|
or litellm.api_key |
|
or litellm.azure_key |
|
or get_secret_str("AZURE_OPENAI_API_KEY") |
|
or get_secret_str("AZURE_API_KEY") |
|
) |
|
|
|
extra_body = optional_params.get("extra_body", {}) |
|
if extra_body is not None: |
|
extra_body.pop("azure_ad_token", None) |
|
else: |
|
get_secret_str("AZURE_AD_TOKEN") |
|
|
|
response = azure_fine_tuning_apis_instance.cancel_fine_tuning_job( |
|
api_base=api_base, |
|
api_key=api_key, |
|
api_version=api_version, |
|
fine_tuning_job_id=fine_tuning_job_id, |
|
timeout=timeout, |
|
max_retries=optional_params.max_retries, |
|
_is_async=_is_async, |
|
organization=optional_params.organization, |
|
) |
|
else: |
|
raise litellm.exceptions.BadRequestError( |
|
message="LiteLLM doesn't support {} for 'create_batch'. Only 'openai' is supported.".format( |
|
custom_llm_provider |
|
), |
|
model="n/a", |
|
llm_provider=custom_llm_provider, |
|
response=httpx.Response( |
|
status_code=400, |
|
content="Unsupported provider", |
|
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), |
|
), |
|
) |
|
return response |
|
except Exception as e: |
|
raise e |
|
|
|
|
|
async def alist_fine_tuning_jobs( |
|
after: Optional[str] = None, |
|
limit: Optional[int] = None, |
|
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", |
|
extra_headers: Optional[Dict[str, str]] = None, |
|
extra_body: Optional[Dict[str, str]] = None, |
|
**kwargs, |
|
): |
|
""" |
|
Async: List your organization's fine-tuning jobs |
|
""" |
|
try: |
|
loop = asyncio.get_event_loop() |
|
kwargs["alist_fine_tuning_jobs"] = True |
|
|
|
|
|
func = partial( |
|
list_fine_tuning_jobs, |
|
after, |
|
limit, |
|
custom_llm_provider, |
|
extra_headers, |
|
extra_body, |
|
**kwargs, |
|
) |
|
|
|
|
|
ctx = contextvars.copy_context() |
|
func_with_context = partial(ctx.run, func) |
|
init_response = await loop.run_in_executor(None, func_with_context) |
|
if asyncio.iscoroutine(init_response): |
|
response = await init_response |
|
else: |
|
response = init_response |
|
return response |
|
except Exception as e: |
|
raise e |
|
|
|
|
|
def list_fine_tuning_jobs( |
|
after: Optional[str] = None, |
|
limit: Optional[int] = None, |
|
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", |
|
extra_headers: Optional[Dict[str, str]] = None, |
|
extra_body: Optional[Dict[str, str]] = None, |
|
**kwargs, |
|
): |
|
""" |
|
List your organization's fine-tuning jobs |
|
|
|
Params: |
|
|
|
- after: Optional[str] = None, Identifier for the last job from the previous pagination request. |
|
- limit: Optional[int] = None, Number of fine-tuning jobs to retrieve. Defaults to 20 |
|
""" |
|
try: |
|
optional_params = GenericLiteLLMParams(**kwargs) |
|
|
|
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600 |
|
|
|
|
|
if ( |
|
timeout is not None |
|
and isinstance(timeout, httpx.Timeout) |
|
and supports_httpx_timeout(custom_llm_provider) is False |
|
): |
|
read_timeout = timeout.read or 600 |
|
timeout = read_timeout |
|
elif timeout is not None and not isinstance(timeout, httpx.Timeout): |
|
timeout = float(timeout) |
|
elif timeout is None: |
|
timeout = 600.0 |
|
|
|
_is_async = kwargs.pop("alist_fine_tuning_jobs", False) is True |
|
|
|
|
|
if custom_llm_provider == "openai": |
|
|
|
|
|
api_base = ( |
|
optional_params.api_base |
|
or litellm.api_base |
|
or os.getenv("OPENAI_API_BASE") |
|
or "https://api.openai.com/v1" |
|
) |
|
organization = ( |
|
optional_params.organization |
|
or litellm.organization |
|
or os.getenv("OPENAI_ORGANIZATION", None) |
|
or None |
|
) |
|
|
|
api_key = ( |
|
optional_params.api_key |
|
or litellm.api_key |
|
or litellm.openai_key |
|
or os.getenv("OPENAI_API_KEY") |
|
) |
|
|
|
response = openai_fine_tuning_apis_instance.list_fine_tuning_jobs( |
|
api_base=api_base, |
|
api_key=api_key, |
|
api_version=optional_params.api_version, |
|
organization=organization, |
|
after=after, |
|
limit=limit, |
|
timeout=timeout, |
|
max_retries=optional_params.max_retries, |
|
_is_async=_is_async, |
|
) |
|
|
|
elif custom_llm_provider == "azure": |
|
api_base = optional_params.api_base or litellm.api_base or get_secret_str("AZURE_API_BASE") |
|
|
|
api_version = ( |
|
optional_params.api_version |
|
or litellm.api_version |
|
or get_secret_str("AZURE_API_VERSION") |
|
) |
|
|
|
api_key = ( |
|
optional_params.api_key |
|
or litellm.api_key |
|
or litellm.azure_key |
|
or get_secret_str("AZURE_OPENAI_API_KEY") |
|
or get_secret_str("AZURE_API_KEY") |
|
) |
|
|
|
extra_body = optional_params.get("extra_body", {}) |
|
if extra_body is not None: |
|
extra_body.pop("azure_ad_token", None) |
|
else: |
|
get_secret("AZURE_AD_TOKEN") |
|
|
|
response = azure_fine_tuning_apis_instance.list_fine_tuning_jobs( |
|
api_base=api_base, |
|
api_key=api_key, |
|
api_version=api_version, |
|
after=after, |
|
limit=limit, |
|
timeout=timeout, |
|
max_retries=optional_params.max_retries, |
|
_is_async=_is_async, |
|
organization=optional_params.organization, |
|
) |
|
else: |
|
raise litellm.exceptions.BadRequestError( |
|
message="LiteLLM doesn't support {} for 'create_batch'. Only 'openai' is supported.".format( |
|
custom_llm_provider |
|
), |
|
model="n/a", |
|
llm_provider=custom_llm_provider, |
|
response=httpx.Response( |
|
status_code=400, |
|
content="Unsupported provider", |
|
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), |
|
), |
|
) |
|
return response |
|
except Exception as e: |
|
raise e |
|
|
|
|
|
async def aretrieve_fine_tuning_job( |
|
fine_tuning_job_id: str, |
|
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", |
|
extra_headers: Optional[Dict[str, str]] = None, |
|
extra_body: Optional[Dict[str, str]] = None, |
|
**kwargs, |
|
) -> FineTuningJob: |
|
""" |
|
Async: Get info about a fine-tuning job. |
|
""" |
|
try: |
|
loop = asyncio.get_event_loop() |
|
kwargs["aretrieve_fine_tuning_job"] = True |
|
|
|
|
|
func = partial( |
|
retrieve_fine_tuning_job, |
|
fine_tuning_job_id, |
|
custom_llm_provider, |
|
extra_headers, |
|
extra_body, |
|
**kwargs, |
|
) |
|
|
|
|
|
ctx = contextvars.copy_context() |
|
func_with_context = partial(ctx.run, func) |
|
init_response = await loop.run_in_executor(None, func_with_context) |
|
if asyncio.iscoroutine(init_response): |
|
response = await init_response |
|
else: |
|
response = init_response |
|
return response |
|
except Exception as e: |
|
raise e |
|
|
|
|
|
def retrieve_fine_tuning_job( |
|
fine_tuning_job_id: str, |
|
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", |
|
extra_headers: Optional[Dict[str, str]] = None, |
|
extra_body: Optional[Dict[str, str]] = None, |
|
**kwargs, |
|
) -> Union[FineTuningJob, Coroutine[Any, Any, FineTuningJob]]: |
|
""" |
|
Get info about a fine-tuning job. |
|
""" |
|
try: |
|
optional_params = GenericLiteLLMParams(**kwargs) |
|
|
|
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600 |
|
|
|
|
|
if ( |
|
timeout is not None |
|
and isinstance(timeout, httpx.Timeout) |
|
and supports_httpx_timeout(custom_llm_provider) is False |
|
): |
|
read_timeout = timeout.read or 600 |
|
timeout = read_timeout |
|
elif timeout is not None and not isinstance(timeout, httpx.Timeout): |
|
timeout = float(timeout) |
|
elif timeout is None: |
|
timeout = 600.0 |
|
|
|
_is_async = kwargs.pop("aretrieve_fine_tuning_job", False) is True |
|
|
|
|
|
if custom_llm_provider == "openai": |
|
api_base = ( |
|
optional_params.api_base |
|
or litellm.api_base |
|
or os.getenv("OPENAI_API_BASE") |
|
or "https://api.openai.com/v1" |
|
) |
|
organization = ( |
|
optional_params.organization |
|
or litellm.organization |
|
or os.getenv("OPENAI_ORGANIZATION", None) |
|
or None |
|
) |
|
api_key = ( |
|
optional_params.api_key |
|
or litellm.api_key |
|
or litellm.openai_key |
|
or os.getenv("OPENAI_API_KEY") |
|
) |
|
|
|
response = openai_fine_tuning_apis_instance.retrieve_fine_tuning_job( |
|
api_base=api_base, |
|
api_key=api_key, |
|
api_version=optional_params.api_version, |
|
organization=organization, |
|
fine_tuning_job_id=fine_tuning_job_id, |
|
timeout=timeout, |
|
max_retries=optional_params.max_retries, |
|
_is_async=_is_async, |
|
) |
|
|
|
elif custom_llm_provider == "azure": |
|
api_base = optional_params.api_base or litellm.api_base or get_secret_str("AZURE_API_BASE") |
|
|
|
api_version = ( |
|
optional_params.api_version |
|
or litellm.api_version |
|
or get_secret_str("AZURE_API_VERSION") |
|
) |
|
|
|
api_key = ( |
|
optional_params.api_key |
|
or litellm.api_key |
|
or litellm.azure_key |
|
or get_secret_str("AZURE_OPENAI_API_KEY") |
|
or get_secret_str("AZURE_API_KEY") |
|
) |
|
|
|
extra_body = optional_params.get("extra_body", {}) |
|
if extra_body is not None: |
|
extra_body.pop("azure_ad_token", None) |
|
else: |
|
get_secret_str("AZURE_AD_TOKEN") |
|
|
|
response = azure_fine_tuning_apis_instance.retrieve_fine_tuning_job( |
|
api_base=api_base, |
|
api_key=api_key, |
|
api_version=api_version, |
|
fine_tuning_job_id=fine_tuning_job_id, |
|
timeout=timeout, |
|
max_retries=optional_params.max_retries, |
|
_is_async=_is_async, |
|
organization=optional_params.organization, |
|
) |
|
else: |
|
raise litellm.exceptions.BadRequestError( |
|
message="LiteLLM doesn't support {} for 'retrieve_fine_tuning_job'. Only 'openai' and 'azure' are supported.".format( |
|
custom_llm_provider |
|
), |
|
model="n/a", |
|
llm_provider=custom_llm_provider, |
|
response=httpx.Response( |
|
status_code=400, |
|
content="Unsupported provider", |
|
request=httpx.Request(method="retrieve_fine_tuning_job", url="https://github.com/BerriAI/litellm"), |
|
), |
|
) |
|
return response |
|
except Exception as e: |
|
raise e |
|
|