""" Main File for Fine Tuning API implementation https://platform.openai.com/docs/api-reference/fine-tuning - fine_tuning.jobs.create() - fine_tuning.jobs.list() - client.fine_tuning.jobs.list_events() """ import asyncio import contextvars import os from functools import partial from typing import Any, Coroutine, Dict, Literal, Optional, Union import httpx import litellm from litellm._logging import verbose_logger from litellm.llms.azure.fine_tuning.handler import AzureOpenAIFineTuningAPI from litellm.llms.openai.fine_tuning.handler import OpenAIFineTuningAPI from litellm.llms.vertex_ai.fine_tuning.handler import VertexFineTuningAPI from litellm.secret_managers.main import get_secret_str from litellm.types.llms.openai import ( FineTuningJob, FineTuningJobCreate, Hyperparameters, ) from litellm.types.router import * from litellm.utils import client, supports_httpx_timeout ####### ENVIRONMENT VARIABLES ################### openai_fine_tuning_apis_instance = OpenAIFineTuningAPI() azure_fine_tuning_apis_instance = AzureOpenAIFineTuningAPI() vertex_fine_tuning_apis_instance = VertexFineTuningAPI() ################################################# @client async def acreate_fine_tuning_job( model: str, training_file: str, hyperparameters: Optional[dict] = {}, suffix: Optional[str] = None, validation_file: Optional[str] = None, integrations: Optional[List[str]] = None, seed: Optional[int] = None, custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", extra_headers: Optional[Dict[str, str]] = None, extra_body: Optional[Dict[str, str]] = None, **kwargs, ) -> FineTuningJob: """ Async: Creates and executes a batch from an uploaded file of request """ verbose_logger.debug( "inside acreate_fine_tuning_job model=%s and kwargs=%s", model, kwargs ) try: loop = asyncio.get_event_loop() kwargs["acreate_fine_tuning_job"] = True # Use a partial function to pass your keyword arguments func = partial( create_fine_tuning_job, model, training_file, hyperparameters, suffix, validation_file, integrations, seed, custom_llm_provider, extra_headers, extra_body, **kwargs, ) # Add the context to the function ctx = contextvars.copy_context() func_with_context = partial(ctx.run, func) init_response = await loop.run_in_executor(None, func_with_context) if asyncio.iscoroutine(init_response): response = await init_response else: response = init_response # type: ignore return response except Exception as e: raise e @client def create_fine_tuning_job( model: str, training_file: str, hyperparameters: Optional[dict] = {}, suffix: Optional[str] = None, validation_file: Optional[str] = None, integrations: Optional[List[str]] = None, seed: Optional[int] = None, custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", extra_headers: Optional[Dict[str, str]] = None, extra_body: Optional[Dict[str, str]] = None, **kwargs, ) -> Union[FineTuningJob, Coroutine[Any, Any, FineTuningJob]]: """ Creates a fine-tuning job which begins the process of creating a new model from a given dataset. Response includes details of the enqueued job including job status and the name of the fine-tuned models once complete """ try: _is_async = kwargs.pop("acreate_fine_tuning_job", False) is True optional_params = GenericLiteLLMParams(**kwargs) # handle hyperparameters hyperparameters = hyperparameters or {} # original hyperparameters _oai_hyperparameters: Hyperparameters = Hyperparameters( **hyperparameters ) # Typed Hyperparameters for OpenAI Spec ### TIMEOUT LOGIC ### timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600 # set timeout for 10 minutes by default if ( timeout is not None and isinstance(timeout, httpx.Timeout) and supports_httpx_timeout(custom_llm_provider) is False ): read_timeout = timeout.read or 600 timeout = read_timeout # default 10 min timeout elif timeout is not None and not isinstance(timeout, httpx.Timeout): timeout = float(timeout) # type: ignore elif timeout is None: timeout = 600.0 # OpenAI if custom_llm_provider == "openai": # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there api_base = ( optional_params.api_base or litellm.api_base or os.getenv("OPENAI_API_BASE") or "https://api.openai.com/v1" ) organization = ( optional_params.organization or litellm.organization or os.getenv("OPENAI_ORGANIZATION", None) or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105 ) # set API KEY api_key = ( optional_params.api_key or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there or litellm.openai_key or os.getenv("OPENAI_API_KEY") ) create_fine_tuning_job_data = FineTuningJobCreate( model=model, training_file=training_file, hyperparameters=_oai_hyperparameters, suffix=suffix, validation_file=validation_file, integrations=integrations, seed=seed, ) create_fine_tuning_job_data_dict = create_fine_tuning_job_data.model_dump( exclude_none=True ) response = openai_fine_tuning_apis_instance.create_fine_tuning_job( api_base=api_base, api_key=api_key, api_version=optional_params.api_version, organization=organization, create_fine_tuning_job_data=create_fine_tuning_job_data_dict, timeout=timeout, max_retries=optional_params.max_retries, _is_async=_is_async, ) # Azure OpenAI elif custom_llm_provider == "azure": api_base = optional_params.api_base or litellm.api_base or get_secret_str("AZURE_API_BASE") # type: ignore api_version = ( optional_params.api_version or litellm.api_version or get_secret_str("AZURE_API_VERSION") ) # type: ignore api_key = ( optional_params.api_key or litellm.api_key or litellm.azure_key or get_secret_str("AZURE_OPENAI_API_KEY") or get_secret_str("AZURE_API_KEY") ) # type: ignore extra_body = optional_params.get("extra_body", {}) if extra_body is not None: extra_body.pop("azure_ad_token", None) else: get_secret_str("AZURE_AD_TOKEN") # type: ignore create_fine_tuning_job_data = FineTuningJobCreate( model=model, training_file=training_file, hyperparameters=_oai_hyperparameters, suffix=suffix, validation_file=validation_file, integrations=integrations, seed=seed, ) create_fine_tuning_job_data_dict = create_fine_tuning_job_data.model_dump( exclude_none=True ) response = azure_fine_tuning_apis_instance.create_fine_tuning_job( api_base=api_base, api_key=api_key, api_version=api_version, create_fine_tuning_job_data=create_fine_tuning_job_data_dict, timeout=timeout, max_retries=optional_params.max_retries, _is_async=_is_async, organization=optional_params.organization, ) elif custom_llm_provider == "vertex_ai": api_base = optional_params.api_base or "" vertex_ai_project = ( optional_params.vertex_project or litellm.vertex_project or get_secret_str("VERTEXAI_PROJECT") ) vertex_ai_location = ( optional_params.vertex_location or litellm.vertex_location or get_secret_str("VERTEXAI_LOCATION") ) vertex_credentials = optional_params.vertex_credentials or get_secret_str( "VERTEXAI_CREDENTIALS" ) create_fine_tuning_job_data = FineTuningJobCreate( model=model, training_file=training_file, hyperparameters=_oai_hyperparameters, suffix=suffix, validation_file=validation_file, integrations=integrations, seed=seed, ) response = vertex_fine_tuning_apis_instance.create_fine_tuning_job( _is_async=_is_async, create_fine_tuning_job_data=create_fine_tuning_job_data, vertex_credentials=vertex_credentials, vertex_project=vertex_ai_project, vertex_location=vertex_ai_location, timeout=timeout, api_base=api_base, kwargs=kwargs, original_hyperparameters=hyperparameters, ) else: raise litellm.exceptions.BadRequestError( message="LiteLLM doesn't support {} for 'create_batch'. Only 'openai' is supported.".format( custom_llm_provider ), model="n/a", llm_provider=custom_llm_provider, response=httpx.Response( status_code=400, content="Unsupported provider", request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore ), ) return response except Exception as e: verbose_logger.error("got exception in create_fine_tuning_job=%s", str(e)) raise e async def acancel_fine_tuning_job( fine_tuning_job_id: str, custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", extra_headers: Optional[Dict[str, str]] = None, extra_body: Optional[Dict[str, str]] = None, **kwargs, ) -> FineTuningJob: """ Async: Immediately cancel a fine-tune job. """ try: loop = asyncio.get_event_loop() kwargs["acancel_fine_tuning_job"] = True # Use a partial function to pass your keyword arguments func = partial( cancel_fine_tuning_job, fine_tuning_job_id, custom_llm_provider, extra_headers, extra_body, **kwargs, ) # Add the context to the function ctx = contextvars.copy_context() func_with_context = partial(ctx.run, func) init_response = await loop.run_in_executor(None, func_with_context) if asyncio.iscoroutine(init_response): response = await init_response else: response = init_response # type: ignore return response except Exception as e: raise e def cancel_fine_tuning_job( fine_tuning_job_id: str, custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", extra_headers: Optional[Dict[str, str]] = None, extra_body: Optional[Dict[str, str]] = None, **kwargs, ) -> Union[FineTuningJob, Coroutine[Any, Any, FineTuningJob]]: """ Immediately cancel a fine-tune job. Response includes details of the enqueued job including job status and the name of the fine-tuned models once complete """ try: optional_params = GenericLiteLLMParams(**kwargs) ### TIMEOUT LOGIC ### timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600 # set timeout for 10 minutes by default if ( timeout is not None and isinstance(timeout, httpx.Timeout) and supports_httpx_timeout(custom_llm_provider) is False ): read_timeout = timeout.read or 600 timeout = read_timeout # default 10 min timeout elif timeout is not None and not isinstance(timeout, httpx.Timeout): timeout = float(timeout) # type: ignore elif timeout is None: timeout = 600.0 _is_async = kwargs.pop("acancel_fine_tuning_job", False) is True # OpenAI if custom_llm_provider == "openai": # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there api_base = ( optional_params.api_base or litellm.api_base or os.getenv("OPENAI_API_BASE") or "https://api.openai.com/v1" ) organization = ( optional_params.organization or litellm.organization or os.getenv("OPENAI_ORGANIZATION", None) or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105 ) # set API KEY api_key = ( optional_params.api_key or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there or litellm.openai_key or os.getenv("OPENAI_API_KEY") ) response = openai_fine_tuning_apis_instance.cancel_fine_tuning_job( api_base=api_base, api_key=api_key, api_version=optional_params.api_version, organization=organization, fine_tuning_job_id=fine_tuning_job_id, timeout=timeout, max_retries=optional_params.max_retries, _is_async=_is_async, ) # Azure OpenAI elif custom_llm_provider == "azure": api_base = optional_params.api_base or litellm.api_base or get_secret("AZURE_API_BASE") # type: ignore api_version = ( optional_params.api_version or litellm.api_version or get_secret_str("AZURE_API_VERSION") ) # type: ignore api_key = ( optional_params.api_key or litellm.api_key or litellm.azure_key or get_secret_str("AZURE_OPENAI_API_KEY") or get_secret_str("AZURE_API_KEY") ) # type: ignore extra_body = optional_params.get("extra_body", {}) if extra_body is not None: extra_body.pop("azure_ad_token", None) else: get_secret_str("AZURE_AD_TOKEN") # type: ignore response = azure_fine_tuning_apis_instance.cancel_fine_tuning_job( api_base=api_base, api_key=api_key, api_version=api_version, fine_tuning_job_id=fine_tuning_job_id, timeout=timeout, max_retries=optional_params.max_retries, _is_async=_is_async, organization=optional_params.organization, ) else: raise litellm.exceptions.BadRequestError( message="LiteLLM doesn't support {} for 'create_batch'. Only 'openai' is supported.".format( custom_llm_provider ), model="n/a", llm_provider=custom_llm_provider, response=httpx.Response( status_code=400, content="Unsupported provider", request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore ), ) return response except Exception as e: raise e async def alist_fine_tuning_jobs( after: Optional[str] = None, limit: Optional[int] = None, custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", extra_headers: Optional[Dict[str, str]] = None, extra_body: Optional[Dict[str, str]] = None, **kwargs, ): """ Async: List your organization's fine-tuning jobs """ try: loop = asyncio.get_event_loop() kwargs["alist_fine_tuning_jobs"] = True # Use a partial function to pass your keyword arguments func = partial( list_fine_tuning_jobs, after, limit, custom_llm_provider, extra_headers, extra_body, **kwargs, ) # Add the context to the function ctx = contextvars.copy_context() func_with_context = partial(ctx.run, func) init_response = await loop.run_in_executor(None, func_with_context) if asyncio.iscoroutine(init_response): response = await init_response else: response = init_response # type: ignore return response except Exception as e: raise e def list_fine_tuning_jobs( after: Optional[str] = None, limit: Optional[int] = None, custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", extra_headers: Optional[Dict[str, str]] = None, extra_body: Optional[Dict[str, str]] = None, **kwargs, ): """ List your organization's fine-tuning jobs Params: - after: Optional[str] = None, Identifier for the last job from the previous pagination request. - limit: Optional[int] = None, Number of fine-tuning jobs to retrieve. Defaults to 20 """ try: optional_params = GenericLiteLLMParams(**kwargs) ### TIMEOUT LOGIC ### timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600 # set timeout for 10 minutes by default if ( timeout is not None and isinstance(timeout, httpx.Timeout) and supports_httpx_timeout(custom_llm_provider) is False ): read_timeout = timeout.read or 600 timeout = read_timeout # default 10 min timeout elif timeout is not None and not isinstance(timeout, httpx.Timeout): timeout = float(timeout) # type: ignore elif timeout is None: timeout = 600.0 _is_async = kwargs.pop("alist_fine_tuning_jobs", False) is True # OpenAI if custom_llm_provider == "openai": # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there api_base = ( optional_params.api_base or litellm.api_base or os.getenv("OPENAI_API_BASE") or "https://api.openai.com/v1" ) organization = ( optional_params.organization or litellm.organization or os.getenv("OPENAI_ORGANIZATION", None) or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105 ) # set API KEY api_key = ( optional_params.api_key or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there or litellm.openai_key or os.getenv("OPENAI_API_KEY") ) response = openai_fine_tuning_apis_instance.list_fine_tuning_jobs( api_base=api_base, api_key=api_key, api_version=optional_params.api_version, organization=organization, after=after, limit=limit, timeout=timeout, max_retries=optional_params.max_retries, _is_async=_is_async, ) # Azure OpenAI elif custom_llm_provider == "azure": api_base = optional_params.api_base or litellm.api_base or get_secret_str("AZURE_API_BASE") # type: ignore api_version = ( optional_params.api_version or litellm.api_version or get_secret_str("AZURE_API_VERSION") ) # type: ignore api_key = ( optional_params.api_key or litellm.api_key or litellm.azure_key or get_secret_str("AZURE_OPENAI_API_KEY") or get_secret_str("AZURE_API_KEY") ) # type: ignore extra_body = optional_params.get("extra_body", {}) if extra_body is not None: extra_body.pop("azure_ad_token", None) else: get_secret("AZURE_AD_TOKEN") # type: ignore response = azure_fine_tuning_apis_instance.list_fine_tuning_jobs( api_base=api_base, api_key=api_key, api_version=api_version, after=after, limit=limit, timeout=timeout, max_retries=optional_params.max_retries, _is_async=_is_async, organization=optional_params.organization, ) else: raise litellm.exceptions.BadRequestError( message="LiteLLM doesn't support {} for 'create_batch'. Only 'openai' is supported.".format( custom_llm_provider ), model="n/a", llm_provider=custom_llm_provider, response=httpx.Response( status_code=400, content="Unsupported provider", request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore ), ) return response except Exception as e: raise e async def aretrieve_fine_tuning_job( fine_tuning_job_id: str, custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", extra_headers: Optional[Dict[str, str]] = None, extra_body: Optional[Dict[str, str]] = None, **kwargs, ) -> FineTuningJob: """ Async: Get info about a fine-tuning job. """ try: loop = asyncio.get_event_loop() kwargs["aretrieve_fine_tuning_job"] = True # Use a partial function to pass your keyword arguments func = partial( retrieve_fine_tuning_job, fine_tuning_job_id, custom_llm_provider, extra_headers, extra_body, **kwargs, ) # Add the context to the function ctx = contextvars.copy_context() func_with_context = partial(ctx.run, func) init_response = await loop.run_in_executor(None, func_with_context) if asyncio.iscoroutine(init_response): response = await init_response else: response = init_response # type: ignore return response except Exception as e: raise e def retrieve_fine_tuning_job( fine_tuning_job_id: str, custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", extra_headers: Optional[Dict[str, str]] = None, extra_body: Optional[Dict[str, str]] = None, **kwargs, ) -> Union[FineTuningJob, Coroutine[Any, Any, FineTuningJob]]: """ Get info about a fine-tuning job. """ try: optional_params = GenericLiteLLMParams(**kwargs) ### TIMEOUT LOGIC ### timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600 # set timeout for 10 minutes by default if ( timeout is not None and isinstance(timeout, httpx.Timeout) and supports_httpx_timeout(custom_llm_provider) is False ): read_timeout = timeout.read or 600 timeout = read_timeout # default 10 min timeout elif timeout is not None and not isinstance(timeout, httpx.Timeout): timeout = float(timeout) # type: ignore elif timeout is None: timeout = 600.0 _is_async = kwargs.pop("aretrieve_fine_tuning_job", False) is True # OpenAI if custom_llm_provider == "openai": api_base = ( optional_params.api_base or litellm.api_base or os.getenv("OPENAI_API_BASE") or "https://api.openai.com/v1" ) organization = ( optional_params.organization or litellm.organization or os.getenv("OPENAI_ORGANIZATION", None) or None ) api_key = ( optional_params.api_key or litellm.api_key or litellm.openai_key or os.getenv("OPENAI_API_KEY") ) response = openai_fine_tuning_apis_instance.retrieve_fine_tuning_job( api_base=api_base, api_key=api_key, api_version=optional_params.api_version, organization=organization, fine_tuning_job_id=fine_tuning_job_id, timeout=timeout, max_retries=optional_params.max_retries, _is_async=_is_async, ) # Azure OpenAI elif custom_llm_provider == "azure": api_base = optional_params.api_base or litellm.api_base or get_secret_str("AZURE_API_BASE") # type: ignore api_version = ( optional_params.api_version or litellm.api_version or get_secret_str("AZURE_API_VERSION") ) # type: ignore api_key = ( optional_params.api_key or litellm.api_key or litellm.azure_key or get_secret_str("AZURE_OPENAI_API_KEY") or get_secret_str("AZURE_API_KEY") ) # type: ignore extra_body = optional_params.get("extra_body", {}) if extra_body is not None: extra_body.pop("azure_ad_token", None) else: get_secret_str("AZURE_AD_TOKEN") # type: ignore response = azure_fine_tuning_apis_instance.retrieve_fine_tuning_job( api_base=api_base, api_key=api_key, api_version=api_version, fine_tuning_job_id=fine_tuning_job_id, timeout=timeout, max_retries=optional_params.max_retries, _is_async=_is_async, organization=optional_params.organization, ) else: raise litellm.exceptions.BadRequestError( message="LiteLLM doesn't support {} for 'retrieve_fine_tuning_job'. Only 'openai' and 'azure' are supported.".format( custom_llm_provider ), model="n/a", llm_provider=custom_llm_provider, response=httpx.Response( status_code=400, content="Unsupported provider", request=httpx.Request(method="retrieve_fine_tuning_job", url="https://github.com/BerriAI/litellm"), # type: ignore ), ) return response except Exception as e: raise e