|
""" |
|
Qdrant Semantic Cache implementation |
|
|
|
Has 4 methods: |
|
- set_cache |
|
- get_cache |
|
- async_set_cache |
|
- async_get_cache |
|
""" |
|
|
|
import ast |
|
import asyncio |
|
import json |
|
from typing import Any |
|
|
|
import litellm |
|
from litellm._logging import print_verbose |
|
|
|
from .base_cache import BaseCache |
|
|
|
|
|
class QdrantSemanticCache(BaseCache): |
|
def __init__( |
|
self, |
|
qdrant_api_base=None, |
|
qdrant_api_key=None, |
|
collection_name=None, |
|
similarity_threshold=None, |
|
quantization_config=None, |
|
embedding_model="text-embedding-ada-002", |
|
host_type=None, |
|
): |
|
import os |
|
|
|
from litellm.llms.custom_httpx.http_handler import ( |
|
_get_httpx_client, |
|
get_async_httpx_client, |
|
httpxSpecialProvider, |
|
) |
|
from litellm.secret_managers.main import get_secret_str |
|
|
|
if collection_name is None: |
|
raise Exception("collection_name must be provided, passed None") |
|
|
|
self.collection_name = collection_name |
|
print_verbose( |
|
f"qdrant semantic-cache initializing COLLECTION - {self.collection_name}" |
|
) |
|
|
|
if similarity_threshold is None: |
|
raise Exception("similarity_threshold must be provided, passed None") |
|
self.similarity_threshold = similarity_threshold |
|
self.embedding_model = embedding_model |
|
headers = {} |
|
|
|
|
|
if qdrant_api_base: |
|
if isinstance(qdrant_api_base, str) and qdrant_api_base.startswith( |
|
"os.environ/" |
|
): |
|
qdrant_api_base = get_secret_str(qdrant_api_base) |
|
if qdrant_api_key: |
|
if isinstance(qdrant_api_key, str) and qdrant_api_key.startswith( |
|
"os.environ/" |
|
): |
|
qdrant_api_key = get_secret_str(qdrant_api_key) |
|
|
|
qdrant_api_base = ( |
|
qdrant_api_base or os.getenv("QDRANT_URL") or os.getenv("QDRANT_API_BASE") |
|
) |
|
qdrant_api_key = qdrant_api_key or os.getenv("QDRANT_API_KEY") |
|
headers = {"Content-Type": "application/json"} |
|
if qdrant_api_key: |
|
headers["api-key"] = qdrant_api_key |
|
|
|
if qdrant_api_base is None: |
|
raise ValueError("Qdrant url must be provided") |
|
|
|
self.qdrant_api_base = qdrant_api_base |
|
self.qdrant_api_key = qdrant_api_key |
|
print_verbose(f"qdrant semantic-cache qdrant_api_base: {self.qdrant_api_base}") |
|
|
|
self.headers = headers |
|
|
|
self.sync_client = _get_httpx_client() |
|
self.async_client = get_async_httpx_client( |
|
llm_provider=httpxSpecialProvider.Caching |
|
) |
|
|
|
if quantization_config is None: |
|
print_verbose( |
|
"Quantization config is not provided. Default binary quantization will be used." |
|
) |
|
collection_exists = self.sync_client.get( |
|
url=f"{self.qdrant_api_base}/collections/{self.collection_name}/exists", |
|
headers=self.headers, |
|
) |
|
if collection_exists.status_code != 200: |
|
raise ValueError( |
|
f"Error from qdrant checking if /collections exist {collection_exists.text}" |
|
) |
|
|
|
if collection_exists.json()["result"]["exists"]: |
|
collection_details = self.sync_client.get( |
|
url=f"{self.qdrant_api_base}/collections/{self.collection_name}", |
|
headers=self.headers, |
|
) |
|
self.collection_info = collection_details.json() |
|
print_verbose( |
|
f"Collection already exists.\nCollection details:{self.collection_info}" |
|
) |
|
else: |
|
if quantization_config is None or quantization_config == "binary": |
|
quantization_params = { |
|
"binary": { |
|
"always_ram": False, |
|
} |
|
} |
|
elif quantization_config == "scalar": |
|
quantization_params = { |
|
"scalar": {"type": "int8", "quantile": 0.99, "always_ram": False} |
|
} |
|
elif quantization_config == "product": |
|
quantization_params = { |
|
"product": {"compression": "x16", "always_ram": False} |
|
} |
|
else: |
|
raise Exception( |
|
"Quantization config must be one of 'scalar', 'binary' or 'product'" |
|
) |
|
|
|
new_collection_status = self.sync_client.put( |
|
url=f"{self.qdrant_api_base}/collections/{self.collection_name}", |
|
json={ |
|
"vectors": {"size": 1536, "distance": "Cosine"}, |
|
"quantization_config": quantization_params, |
|
}, |
|
headers=self.headers, |
|
) |
|
if new_collection_status.json()["result"]: |
|
collection_details = self.sync_client.get( |
|
url=f"{self.qdrant_api_base}/collections/{self.collection_name}", |
|
headers=self.headers, |
|
) |
|
self.collection_info = collection_details.json() |
|
print_verbose( |
|
f"New collection created.\nCollection details:{self.collection_info}" |
|
) |
|
else: |
|
raise Exception("Error while creating new collection") |
|
|
|
def _get_cache_logic(self, cached_response: Any): |
|
if cached_response is None: |
|
return cached_response |
|
try: |
|
cached_response = json.loads( |
|
cached_response |
|
) |
|
except Exception: |
|
cached_response = ast.literal_eval(cached_response) |
|
return cached_response |
|
|
|
def set_cache(self, key, value, **kwargs): |
|
print_verbose(f"qdrant semantic-cache set_cache, kwargs: {kwargs}") |
|
import uuid |
|
|
|
|
|
messages = kwargs["messages"] |
|
prompt = "" |
|
for message in messages: |
|
prompt += message["content"] |
|
|
|
|
|
embedding_response = litellm.embedding( |
|
model=self.embedding_model, |
|
input=prompt, |
|
cache={"no-store": True, "no-cache": True}, |
|
) |
|
|
|
|
|
embedding = embedding_response["data"][0]["embedding"] |
|
|
|
value = str(value) |
|
assert isinstance(value, str) |
|
|
|
data = { |
|
"points": [ |
|
{ |
|
"id": str(uuid.uuid4()), |
|
"vector": embedding, |
|
"payload": { |
|
"text": prompt, |
|
"response": value, |
|
}, |
|
}, |
|
] |
|
} |
|
self.sync_client.put( |
|
url=f"{self.qdrant_api_base}/collections/{self.collection_name}/points", |
|
headers=self.headers, |
|
json=data, |
|
) |
|
return |
|
|
|
def get_cache(self, key, **kwargs): |
|
print_verbose(f"sync qdrant semantic-cache get_cache, kwargs: {kwargs}") |
|
|
|
|
|
messages = kwargs["messages"] |
|
prompt = "" |
|
for message in messages: |
|
prompt += message["content"] |
|
|
|
|
|
embedding_response = litellm.embedding( |
|
model=self.embedding_model, |
|
input=prompt, |
|
cache={"no-store": True, "no-cache": True}, |
|
) |
|
|
|
|
|
embedding = embedding_response["data"][0]["embedding"] |
|
|
|
data = { |
|
"vector": embedding, |
|
"params": { |
|
"quantization": { |
|
"ignore": False, |
|
"rescore": True, |
|
"oversampling": 3.0, |
|
} |
|
}, |
|
"limit": 1, |
|
"with_payload": True, |
|
} |
|
|
|
search_response = self.sync_client.post( |
|
url=f"{self.qdrant_api_base}/collections/{self.collection_name}/points/search", |
|
headers=self.headers, |
|
json=data, |
|
) |
|
results = search_response.json()["result"] |
|
|
|
if results is None: |
|
return None |
|
if isinstance(results, list): |
|
if len(results) == 0: |
|
return None |
|
|
|
similarity = results[0]["score"] |
|
cached_prompt = results[0]["payload"]["text"] |
|
|
|
|
|
print_verbose( |
|
f"semantic cache: similarity threshold: {self.similarity_threshold}, similarity: {similarity}, prompt: {prompt}, closest_cached_prompt: {cached_prompt}" |
|
) |
|
if similarity >= self.similarity_threshold: |
|
|
|
cached_value = results[0]["payload"]["response"] |
|
print_verbose( |
|
f"got a cache hit, similarity: {similarity}, Current prompt: {prompt}, cached_prompt: {cached_prompt}" |
|
) |
|
return self._get_cache_logic(cached_response=cached_value) |
|
else: |
|
|
|
return None |
|
pass |
|
|
|
async def async_set_cache(self, key, value, **kwargs): |
|
import uuid |
|
|
|
from litellm.proxy.proxy_server import llm_model_list, llm_router |
|
|
|
print_verbose(f"async qdrant semantic-cache set_cache, kwargs: {kwargs}") |
|
|
|
|
|
messages = kwargs["messages"] |
|
prompt = "" |
|
for message in messages: |
|
prompt += message["content"] |
|
|
|
router_model_names = ( |
|
[m["model_name"] for m in llm_model_list] |
|
if llm_model_list is not None |
|
else [] |
|
) |
|
if llm_router is not None and self.embedding_model in router_model_names: |
|
user_api_key = kwargs.get("metadata", {}).get("user_api_key", "") |
|
embedding_response = await llm_router.aembedding( |
|
model=self.embedding_model, |
|
input=prompt, |
|
cache={"no-store": True, "no-cache": True}, |
|
metadata={ |
|
"user_api_key": user_api_key, |
|
"semantic-cache-embedding": True, |
|
"trace_id": kwargs.get("metadata", {}).get("trace_id", None), |
|
}, |
|
) |
|
else: |
|
|
|
embedding_response = await litellm.aembedding( |
|
model=self.embedding_model, |
|
input=prompt, |
|
cache={"no-store": True, "no-cache": True}, |
|
) |
|
|
|
|
|
embedding = embedding_response["data"][0]["embedding"] |
|
|
|
value = str(value) |
|
assert isinstance(value, str) |
|
|
|
data = { |
|
"points": [ |
|
{ |
|
"id": str(uuid.uuid4()), |
|
"vector": embedding, |
|
"payload": { |
|
"text": prompt, |
|
"response": value, |
|
}, |
|
}, |
|
] |
|
} |
|
|
|
await self.async_client.put( |
|
url=f"{self.qdrant_api_base}/collections/{self.collection_name}/points", |
|
headers=self.headers, |
|
json=data, |
|
) |
|
return |
|
|
|
async def async_get_cache(self, key, **kwargs): |
|
print_verbose(f"async qdrant semantic-cache get_cache, kwargs: {kwargs}") |
|
from litellm.proxy.proxy_server import llm_model_list, llm_router |
|
|
|
|
|
messages = kwargs["messages"] |
|
prompt = "" |
|
for message in messages: |
|
prompt += message["content"] |
|
|
|
router_model_names = ( |
|
[m["model_name"] for m in llm_model_list] |
|
if llm_model_list is not None |
|
else [] |
|
) |
|
if llm_router is not None and self.embedding_model in router_model_names: |
|
user_api_key = kwargs.get("metadata", {}).get("user_api_key", "") |
|
embedding_response = await llm_router.aembedding( |
|
model=self.embedding_model, |
|
input=prompt, |
|
cache={"no-store": True, "no-cache": True}, |
|
metadata={ |
|
"user_api_key": user_api_key, |
|
"semantic-cache-embedding": True, |
|
"trace_id": kwargs.get("metadata", {}).get("trace_id", None), |
|
}, |
|
) |
|
else: |
|
|
|
embedding_response = await litellm.aembedding( |
|
model=self.embedding_model, |
|
input=prompt, |
|
cache={"no-store": True, "no-cache": True}, |
|
) |
|
|
|
|
|
embedding = embedding_response["data"][0]["embedding"] |
|
|
|
data = { |
|
"vector": embedding, |
|
"params": { |
|
"quantization": { |
|
"ignore": False, |
|
"rescore": True, |
|
"oversampling": 3.0, |
|
} |
|
}, |
|
"limit": 1, |
|
"with_payload": True, |
|
} |
|
|
|
search_response = await self.async_client.post( |
|
url=f"{self.qdrant_api_base}/collections/{self.collection_name}/points/search", |
|
headers=self.headers, |
|
json=data, |
|
) |
|
|
|
results = search_response.json()["result"] |
|
|
|
if results is None: |
|
kwargs.setdefault("metadata", {})["semantic-similarity"] = 0.0 |
|
return None |
|
if isinstance(results, list): |
|
if len(results) == 0: |
|
kwargs.setdefault("metadata", {})["semantic-similarity"] = 0.0 |
|
return None |
|
|
|
similarity = results[0]["score"] |
|
cached_prompt = results[0]["payload"]["text"] |
|
|
|
|
|
print_verbose( |
|
f"semantic cache: similarity threshold: {self.similarity_threshold}, similarity: {similarity}, prompt: {prompt}, closest_cached_prompt: {cached_prompt}" |
|
) |
|
|
|
|
|
kwargs.setdefault("metadata", {})["semantic-similarity"] = similarity |
|
|
|
if similarity >= self.similarity_threshold: |
|
|
|
cached_value = results[0]["payload"]["response"] |
|
print_verbose( |
|
f"got a cache hit, similarity: {similarity}, Current prompt: {prompt}, cached_prompt: {cached_prompt}" |
|
) |
|
return self._get_cache_logic(cached_response=cached_value) |
|
else: |
|
|
|
return None |
|
pass |
|
|
|
async def _collection_info(self): |
|
return self.collection_info |
|
|
|
async def async_set_cache_pipeline(self, cache_list, **kwargs): |
|
tasks = [] |
|
for val in cache_list: |
|
tasks.append(self.async_set_cache(val[0], val[1], **kwargs)) |
|
await asyncio.gather(*tasks) |
|
|