File size: 14,937 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
"""
Qdrant Semantic Cache implementation

Has 4 methods:
    - set_cache
    - get_cache
    - async_set_cache
    - async_get_cache
"""

import ast
import asyncio
import json
from typing import Any

import litellm
from litellm._logging import print_verbose

from .base_cache import BaseCache


class QdrantSemanticCache(BaseCache):
    def __init__(  # noqa: PLR0915
        self,
        qdrant_api_base=None,
        qdrant_api_key=None,
        collection_name=None,
        similarity_threshold=None,
        quantization_config=None,
        embedding_model="text-embedding-ada-002",
        host_type=None,
    ):
        import os

        from litellm.llms.custom_httpx.http_handler import (
            _get_httpx_client,
            get_async_httpx_client,
            httpxSpecialProvider,
        )
        from litellm.secret_managers.main import get_secret_str

        if collection_name is None:
            raise Exception("collection_name must be provided, passed None")

        self.collection_name = collection_name
        print_verbose(
            f"qdrant semantic-cache initializing COLLECTION - {self.collection_name}"
        )

        if similarity_threshold is None:
            raise Exception("similarity_threshold must be provided, passed None")
        self.similarity_threshold = similarity_threshold
        self.embedding_model = embedding_model
        headers = {}

        # check if defined as os.environ/ variable
        if qdrant_api_base:
            if isinstance(qdrant_api_base, str) and qdrant_api_base.startswith(
                "os.environ/"
            ):
                qdrant_api_base = get_secret_str(qdrant_api_base)
        if qdrant_api_key:
            if isinstance(qdrant_api_key, str) and qdrant_api_key.startswith(
                "os.environ/"
            ):
                qdrant_api_key = get_secret_str(qdrant_api_key)

        qdrant_api_base = (
            qdrant_api_base or os.getenv("QDRANT_URL") or os.getenv("QDRANT_API_BASE")
        )
        qdrant_api_key = qdrant_api_key or os.getenv("QDRANT_API_KEY")
        headers = {"Content-Type": "application/json"}
        if qdrant_api_key:
            headers["api-key"] = qdrant_api_key

        if qdrant_api_base is None:
            raise ValueError("Qdrant url must be provided")

        self.qdrant_api_base = qdrant_api_base
        self.qdrant_api_key = qdrant_api_key
        print_verbose(f"qdrant semantic-cache qdrant_api_base: {self.qdrant_api_base}")

        self.headers = headers

        self.sync_client = _get_httpx_client()
        self.async_client = get_async_httpx_client(
            llm_provider=httpxSpecialProvider.Caching
        )

        if quantization_config is None:
            print_verbose(
                "Quantization config is not provided. Default binary quantization will be used."
            )
        collection_exists = self.sync_client.get(
            url=f"{self.qdrant_api_base}/collections/{self.collection_name}/exists",
            headers=self.headers,
        )
        if collection_exists.status_code != 200:
            raise ValueError(
                f"Error from qdrant checking if /collections exist {collection_exists.text}"
            )

        if collection_exists.json()["result"]["exists"]:
            collection_details = self.sync_client.get(
                url=f"{self.qdrant_api_base}/collections/{self.collection_name}",
                headers=self.headers,
            )
            self.collection_info = collection_details.json()
            print_verbose(
                f"Collection already exists.\nCollection details:{self.collection_info}"
            )
        else:
            if quantization_config is None or quantization_config == "binary":
                quantization_params = {
                    "binary": {
                        "always_ram": False,
                    }
                }
            elif quantization_config == "scalar":
                quantization_params = {
                    "scalar": {"type": "int8", "quantile": 0.99, "always_ram": False}
                }
            elif quantization_config == "product":
                quantization_params = {
                    "product": {"compression": "x16", "always_ram": False}
                }
            else:
                raise Exception(
                    "Quantization config must be one of 'scalar', 'binary' or 'product'"
                )

            new_collection_status = self.sync_client.put(
                url=f"{self.qdrant_api_base}/collections/{self.collection_name}",
                json={
                    "vectors": {"size": 1536, "distance": "Cosine"},
                    "quantization_config": quantization_params,
                },
                headers=self.headers,
            )
            if new_collection_status.json()["result"]:
                collection_details = self.sync_client.get(
                    url=f"{self.qdrant_api_base}/collections/{self.collection_name}",
                    headers=self.headers,
                )
                self.collection_info = collection_details.json()
                print_verbose(
                    f"New collection created.\nCollection details:{self.collection_info}"
                )
            else:
                raise Exception("Error while creating new collection")

    def _get_cache_logic(self, cached_response: Any):
        if cached_response is None:
            return cached_response
        try:
            cached_response = json.loads(
                cached_response
            )  # Convert string to dictionary
        except Exception:
            cached_response = ast.literal_eval(cached_response)
        return cached_response

    def set_cache(self, key, value, **kwargs):
        print_verbose(f"qdrant semantic-cache set_cache, kwargs: {kwargs}")
        import uuid

        # get the prompt
        messages = kwargs["messages"]
        prompt = ""
        for message in messages:
            prompt += message["content"]

        # create an embedding for prompt
        embedding_response = litellm.embedding(
            model=self.embedding_model,
            input=prompt,
            cache={"no-store": True, "no-cache": True},
        )

        # get the embedding
        embedding = embedding_response["data"][0]["embedding"]

        value = str(value)
        assert isinstance(value, str)

        data = {
            "points": [
                {
                    "id": str(uuid.uuid4()),
                    "vector": embedding,
                    "payload": {
                        "text": prompt,
                        "response": value,
                    },
                },
            ]
        }
        self.sync_client.put(
            url=f"{self.qdrant_api_base}/collections/{self.collection_name}/points",
            headers=self.headers,
            json=data,
        )
        return

    def get_cache(self, key, **kwargs):
        print_verbose(f"sync qdrant semantic-cache get_cache, kwargs: {kwargs}")

        # get the messages
        messages = kwargs["messages"]
        prompt = ""
        for message in messages:
            prompt += message["content"]

        # convert to embedding
        embedding_response = litellm.embedding(
            model=self.embedding_model,
            input=prompt,
            cache={"no-store": True, "no-cache": True},
        )

        # get the embedding
        embedding = embedding_response["data"][0]["embedding"]

        data = {
            "vector": embedding,
            "params": {
                "quantization": {
                    "ignore": False,
                    "rescore": True,
                    "oversampling": 3.0,
                }
            },
            "limit": 1,
            "with_payload": True,
        }

        search_response = self.sync_client.post(
            url=f"{self.qdrant_api_base}/collections/{self.collection_name}/points/search",
            headers=self.headers,
            json=data,
        )
        results = search_response.json()["result"]

        if results is None:
            return None
        if isinstance(results, list):
            if len(results) == 0:
                return None

        similarity = results[0]["score"]
        cached_prompt = results[0]["payload"]["text"]

        # check similarity, if more than self.similarity_threshold, return results
        print_verbose(
            f"semantic cache: similarity threshold: {self.similarity_threshold}, similarity: {similarity}, prompt: {prompt}, closest_cached_prompt: {cached_prompt}"
        )
        if similarity >= self.similarity_threshold:
            # cache hit !
            cached_value = results[0]["payload"]["response"]
            print_verbose(
                f"got a cache hit, similarity: {similarity}, Current prompt: {prompt}, cached_prompt: {cached_prompt}"
            )
            return self._get_cache_logic(cached_response=cached_value)
        else:
            # cache miss !
            return None
        pass

    async def async_set_cache(self, key, value, **kwargs):
        import uuid

        from litellm.proxy.proxy_server import llm_model_list, llm_router

        print_verbose(f"async qdrant semantic-cache set_cache, kwargs: {kwargs}")

        # get the prompt
        messages = kwargs["messages"]
        prompt = ""
        for message in messages:
            prompt += message["content"]
        # create an embedding for prompt
        router_model_names = (
            [m["model_name"] for m in llm_model_list]
            if llm_model_list is not None
            else []
        )
        if llm_router is not None and self.embedding_model in router_model_names:
            user_api_key = kwargs.get("metadata", {}).get("user_api_key", "")
            embedding_response = await llm_router.aembedding(
                model=self.embedding_model,
                input=prompt,
                cache={"no-store": True, "no-cache": True},
                metadata={
                    "user_api_key": user_api_key,
                    "semantic-cache-embedding": True,
                    "trace_id": kwargs.get("metadata", {}).get("trace_id", None),
                },
            )
        else:
            # convert to embedding
            embedding_response = await litellm.aembedding(
                model=self.embedding_model,
                input=prompt,
                cache={"no-store": True, "no-cache": True},
            )

        # get the embedding
        embedding = embedding_response["data"][0]["embedding"]

        value = str(value)
        assert isinstance(value, str)

        data = {
            "points": [
                {
                    "id": str(uuid.uuid4()),
                    "vector": embedding,
                    "payload": {
                        "text": prompt,
                        "response": value,
                    },
                },
            ]
        }

        await self.async_client.put(
            url=f"{self.qdrant_api_base}/collections/{self.collection_name}/points",
            headers=self.headers,
            json=data,
        )
        return

    async def async_get_cache(self, key, **kwargs):
        print_verbose(f"async qdrant semantic-cache get_cache, kwargs: {kwargs}")
        from litellm.proxy.proxy_server import llm_model_list, llm_router

        # get the messages
        messages = kwargs["messages"]
        prompt = ""
        for message in messages:
            prompt += message["content"]

        router_model_names = (
            [m["model_name"] for m in llm_model_list]
            if llm_model_list is not None
            else []
        )
        if llm_router is not None and self.embedding_model in router_model_names:
            user_api_key = kwargs.get("metadata", {}).get("user_api_key", "")
            embedding_response = await llm_router.aembedding(
                model=self.embedding_model,
                input=prompt,
                cache={"no-store": True, "no-cache": True},
                metadata={
                    "user_api_key": user_api_key,
                    "semantic-cache-embedding": True,
                    "trace_id": kwargs.get("metadata", {}).get("trace_id", None),
                },
            )
        else:
            # convert to embedding
            embedding_response = await litellm.aembedding(
                model=self.embedding_model,
                input=prompt,
                cache={"no-store": True, "no-cache": True},
            )

        # get the embedding
        embedding = embedding_response["data"][0]["embedding"]

        data = {
            "vector": embedding,
            "params": {
                "quantization": {
                    "ignore": False,
                    "rescore": True,
                    "oversampling": 3.0,
                }
            },
            "limit": 1,
            "with_payload": True,
        }

        search_response = await self.async_client.post(
            url=f"{self.qdrant_api_base}/collections/{self.collection_name}/points/search",
            headers=self.headers,
            json=data,
        )

        results = search_response.json()["result"]

        if results is None:
            kwargs.setdefault("metadata", {})["semantic-similarity"] = 0.0
            return None
        if isinstance(results, list):
            if len(results) == 0:
                kwargs.setdefault("metadata", {})["semantic-similarity"] = 0.0
                return None

        similarity = results[0]["score"]
        cached_prompt = results[0]["payload"]["text"]

        # check similarity, if more than self.similarity_threshold, return results
        print_verbose(
            f"semantic cache: similarity threshold: {self.similarity_threshold}, similarity: {similarity}, prompt: {prompt}, closest_cached_prompt: {cached_prompt}"
        )

        # update kwargs["metadata"] with similarity, don't rewrite the original metadata
        kwargs.setdefault("metadata", {})["semantic-similarity"] = similarity

        if similarity >= self.similarity_threshold:
            # cache hit !
            cached_value = results[0]["payload"]["response"]
            print_verbose(
                f"got a cache hit, similarity: {similarity}, Current prompt: {prompt}, cached_prompt: {cached_prompt}"
            )
            return self._get_cache_logic(cached_response=cached_value)
        else:
            # cache miss !
            return None
        pass

    async def _collection_info(self):
        return self.collection_info

    async def async_set_cache_pipeline(self, cache_list, **kwargs):
        tasks = []
        for val in cache_list:
            tasks.append(self.async_set_cache(val[0], val[1], **kwargs))
        await asyncio.gather(*tasks)