|
""" |
|
Main File for Batches API implementation |
|
|
|
https://platform.openai.com/docs/api-reference/batch |
|
|
|
- create_batch() |
|
- retrieve_batch() |
|
- cancel_batch() |
|
- list_batch() |
|
|
|
""" |
|
|
|
import asyncio |
|
import contextvars |
|
import os |
|
from functools import partial |
|
from typing import Any, Coroutine, Dict, Literal, Optional, Union |
|
|
|
import httpx |
|
|
|
import litellm |
|
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj |
|
from litellm.llms.azure.batches.handler import AzureBatchesAPI |
|
from litellm.llms.openai.openai import OpenAIBatchesAPI |
|
from litellm.llms.vertex_ai.batches.handler import VertexAIBatchPrediction |
|
from litellm.secret_managers.main import get_secret_str |
|
from litellm.types.llms.openai import ( |
|
Batch, |
|
CancelBatchRequest, |
|
CreateBatchRequest, |
|
RetrieveBatchRequest, |
|
) |
|
from litellm.types.router import GenericLiteLLMParams |
|
from litellm.utils import client, get_litellm_params, supports_httpx_timeout |
|
|
|
from .batch_utils import batches_async_logging |
|
|
|
|
|
openai_batches_instance = OpenAIBatchesAPI() |
|
azure_batches_instance = AzureBatchesAPI() |
|
vertex_ai_batches_instance = VertexAIBatchPrediction(gcs_bucket_name="") |
|
|
|
|
|
|
|
@client |
|
async def acreate_batch( |
|
completion_window: Literal["24h"], |
|
endpoint: Literal["/v1/chat/completions", "/v1/embeddings", "/v1/completions"], |
|
input_file_id: str, |
|
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", |
|
metadata: Optional[Dict[str, str]] = None, |
|
extra_headers: Optional[Dict[str, str]] = None, |
|
extra_body: Optional[Dict[str, str]] = None, |
|
**kwargs, |
|
) -> Batch: |
|
""" |
|
Async: Creates and executes a batch from an uploaded file of request |
|
|
|
LiteLLM Equivalent of POST: https://api.openai.com/v1/batches |
|
""" |
|
try: |
|
loop = asyncio.get_event_loop() |
|
kwargs["acreate_batch"] = True |
|
|
|
|
|
func = partial( |
|
create_batch, |
|
completion_window, |
|
endpoint, |
|
input_file_id, |
|
custom_llm_provider, |
|
metadata, |
|
extra_headers, |
|
extra_body, |
|
**kwargs, |
|
) |
|
|
|
|
|
ctx = contextvars.copy_context() |
|
func_with_context = partial(ctx.run, func) |
|
init_response = await loop.run_in_executor(None, func_with_context) |
|
|
|
if asyncio.iscoroutine(init_response): |
|
response = await init_response |
|
else: |
|
response = init_response |
|
|
|
|
|
if response is not None: |
|
asyncio.create_task( |
|
batches_async_logging( |
|
logging_obj=kwargs.get("litellm_logging_obj", None), |
|
batch_id=response.id, |
|
custom_llm_provider=custom_llm_provider, |
|
**kwargs, |
|
) |
|
) |
|
|
|
return response |
|
except Exception as e: |
|
raise e |
|
|
|
|
|
@client |
|
def create_batch( |
|
completion_window: Literal["24h"], |
|
endpoint: Literal["/v1/chat/completions", "/v1/embeddings", "/v1/completions"], |
|
input_file_id: str, |
|
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", |
|
metadata: Optional[Dict[str, str]] = None, |
|
extra_headers: Optional[Dict[str, str]] = None, |
|
extra_body: Optional[Dict[str, str]] = None, |
|
**kwargs, |
|
) -> Union[Batch, Coroutine[Any, Any, Batch]]: |
|
""" |
|
Creates and executes a batch from an uploaded file of request |
|
|
|
LiteLLM Equivalent of POST: https://api.openai.com/v1/batches |
|
""" |
|
try: |
|
optional_params = GenericLiteLLMParams(**kwargs) |
|
_is_async = kwargs.pop("acreate_batch", False) is True |
|
litellm_logging_obj: LiteLLMLoggingObj = kwargs.get("litellm_logging_obj", None) |
|
|
|
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600 |
|
litellm_params = get_litellm_params( |
|
custom_llm_provider=custom_llm_provider, |
|
litellm_call_id=kwargs.get("litellm_call_id", None), |
|
litellm_trace_id=kwargs.get("litellm_trace_id"), |
|
litellm_metadata=kwargs.get("litellm_metadata"), |
|
) |
|
litellm_logging_obj.update_environment_variables( |
|
model=None, |
|
user=None, |
|
optional_params=optional_params.model_dump(), |
|
litellm_params=litellm_params, |
|
custom_llm_provider=custom_llm_provider, |
|
) |
|
|
|
if ( |
|
timeout is not None |
|
and isinstance(timeout, httpx.Timeout) |
|
and supports_httpx_timeout(custom_llm_provider) is False |
|
): |
|
read_timeout = timeout.read or 600 |
|
timeout = read_timeout |
|
elif timeout is not None and not isinstance(timeout, httpx.Timeout): |
|
timeout = float(timeout) |
|
elif timeout is None: |
|
timeout = 600.0 |
|
|
|
_create_batch_request = CreateBatchRequest( |
|
completion_window=completion_window, |
|
endpoint=endpoint, |
|
input_file_id=input_file_id, |
|
metadata=metadata, |
|
extra_headers=extra_headers, |
|
extra_body=extra_body, |
|
) |
|
api_base: Optional[str] = None |
|
if custom_llm_provider == "openai": |
|
|
|
|
|
api_base = ( |
|
optional_params.api_base |
|
or litellm.api_base |
|
or os.getenv("OPENAI_API_BASE") |
|
or "https://api.openai.com/v1" |
|
) |
|
organization = ( |
|
optional_params.organization |
|
or litellm.organization |
|
or os.getenv("OPENAI_ORGANIZATION", None) |
|
or None |
|
) |
|
|
|
api_key = ( |
|
optional_params.api_key |
|
or litellm.api_key |
|
or litellm.openai_key |
|
or os.getenv("OPENAI_API_KEY") |
|
) |
|
|
|
response = openai_batches_instance.create_batch( |
|
api_base=api_base, |
|
api_key=api_key, |
|
organization=organization, |
|
create_batch_data=_create_batch_request, |
|
timeout=timeout, |
|
max_retries=optional_params.max_retries, |
|
_is_async=_is_async, |
|
) |
|
elif custom_llm_provider == "azure": |
|
api_base = ( |
|
optional_params.api_base |
|
or litellm.api_base |
|
or get_secret_str("AZURE_API_BASE") |
|
) |
|
api_version = ( |
|
optional_params.api_version |
|
or litellm.api_version |
|
or get_secret_str("AZURE_API_VERSION") |
|
) |
|
|
|
api_key = ( |
|
optional_params.api_key |
|
or litellm.api_key |
|
or litellm.azure_key |
|
or get_secret_str("AZURE_OPENAI_API_KEY") |
|
or get_secret_str("AZURE_API_KEY") |
|
) |
|
|
|
extra_body = optional_params.get("extra_body", {}) |
|
if extra_body is not None: |
|
extra_body.pop("azure_ad_token", None) |
|
else: |
|
get_secret_str("AZURE_AD_TOKEN") |
|
|
|
response = azure_batches_instance.create_batch( |
|
_is_async=_is_async, |
|
api_base=api_base, |
|
api_key=api_key, |
|
api_version=api_version, |
|
timeout=timeout, |
|
max_retries=optional_params.max_retries, |
|
create_batch_data=_create_batch_request, |
|
) |
|
elif custom_llm_provider == "vertex_ai": |
|
api_base = optional_params.api_base or "" |
|
vertex_ai_project = ( |
|
optional_params.vertex_project |
|
or litellm.vertex_project |
|
or get_secret_str("VERTEXAI_PROJECT") |
|
) |
|
vertex_ai_location = ( |
|
optional_params.vertex_location |
|
or litellm.vertex_location |
|
or get_secret_str("VERTEXAI_LOCATION") |
|
) |
|
vertex_credentials = optional_params.vertex_credentials or get_secret_str( |
|
"VERTEXAI_CREDENTIALS" |
|
) |
|
|
|
response = vertex_ai_batches_instance.create_batch( |
|
_is_async=_is_async, |
|
api_base=api_base, |
|
vertex_project=vertex_ai_project, |
|
vertex_location=vertex_ai_location, |
|
vertex_credentials=vertex_credentials, |
|
timeout=timeout, |
|
max_retries=optional_params.max_retries, |
|
create_batch_data=_create_batch_request, |
|
) |
|
else: |
|
raise litellm.exceptions.BadRequestError( |
|
message="LiteLLM doesn't support custom_llm_provider={} for 'create_batch'".format( |
|
custom_llm_provider |
|
), |
|
model="n/a", |
|
llm_provider=custom_llm_provider, |
|
response=httpx.Response( |
|
status_code=400, |
|
content="Unsupported provider", |
|
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), |
|
), |
|
) |
|
return response |
|
except Exception as e: |
|
raise e |
|
|
|
|
|
async def aretrieve_batch( |
|
batch_id: str, |
|
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", |
|
metadata: Optional[Dict[str, str]] = None, |
|
extra_headers: Optional[Dict[str, str]] = None, |
|
extra_body: Optional[Dict[str, str]] = None, |
|
**kwargs, |
|
) -> Batch: |
|
""" |
|
Async: Retrieves a batch. |
|
|
|
LiteLLM Equivalent of GET https://api.openai.com/v1/batches/{batch_id} |
|
""" |
|
try: |
|
loop = asyncio.get_event_loop() |
|
kwargs["aretrieve_batch"] = True |
|
|
|
|
|
func = partial( |
|
retrieve_batch, |
|
batch_id, |
|
custom_llm_provider, |
|
metadata, |
|
extra_headers, |
|
extra_body, |
|
**kwargs, |
|
) |
|
|
|
ctx = contextvars.copy_context() |
|
func_with_context = partial(ctx.run, func) |
|
init_response = await loop.run_in_executor(None, func_with_context) |
|
if asyncio.iscoroutine(init_response): |
|
response = await init_response |
|
else: |
|
response = init_response |
|
|
|
return response |
|
except Exception as e: |
|
raise e |
|
|
|
|
|
def retrieve_batch( |
|
batch_id: str, |
|
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", |
|
metadata: Optional[Dict[str, str]] = None, |
|
extra_headers: Optional[Dict[str, str]] = None, |
|
extra_body: Optional[Dict[str, str]] = None, |
|
**kwargs, |
|
) -> Union[Batch, Coroutine[Any, Any, Batch]]: |
|
""" |
|
Retrieves a batch. |
|
|
|
LiteLLM Equivalent of GET https://api.openai.com/v1/batches/{batch_id} |
|
""" |
|
try: |
|
optional_params = GenericLiteLLMParams(**kwargs) |
|
|
|
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600 |
|
|
|
|
|
if ( |
|
timeout is not None |
|
and isinstance(timeout, httpx.Timeout) |
|
and supports_httpx_timeout(custom_llm_provider) is False |
|
): |
|
read_timeout = timeout.read or 600 |
|
timeout = read_timeout |
|
elif timeout is not None and not isinstance(timeout, httpx.Timeout): |
|
timeout = float(timeout) |
|
elif timeout is None: |
|
timeout = 600.0 |
|
|
|
_retrieve_batch_request = RetrieveBatchRequest( |
|
batch_id=batch_id, |
|
extra_headers=extra_headers, |
|
extra_body=extra_body, |
|
) |
|
|
|
_is_async = kwargs.pop("aretrieve_batch", False) is True |
|
api_base: Optional[str] = None |
|
if custom_llm_provider == "openai": |
|
|
|
|
|
api_base = ( |
|
optional_params.api_base |
|
or litellm.api_base |
|
or os.getenv("OPENAI_API_BASE") |
|
or "https://api.openai.com/v1" |
|
) |
|
organization = ( |
|
optional_params.organization |
|
or litellm.organization |
|
or os.getenv("OPENAI_ORGANIZATION", None) |
|
or None |
|
) |
|
|
|
api_key = ( |
|
optional_params.api_key |
|
or litellm.api_key |
|
or litellm.openai_key |
|
or os.getenv("OPENAI_API_KEY") |
|
) |
|
|
|
response = openai_batches_instance.retrieve_batch( |
|
_is_async=_is_async, |
|
retrieve_batch_data=_retrieve_batch_request, |
|
api_base=api_base, |
|
api_key=api_key, |
|
organization=organization, |
|
timeout=timeout, |
|
max_retries=optional_params.max_retries, |
|
) |
|
elif custom_llm_provider == "azure": |
|
api_base = ( |
|
optional_params.api_base |
|
or litellm.api_base |
|
or get_secret_str("AZURE_API_BASE") |
|
) |
|
api_version = ( |
|
optional_params.api_version |
|
or litellm.api_version |
|
or get_secret_str("AZURE_API_VERSION") |
|
) |
|
|
|
api_key = ( |
|
optional_params.api_key |
|
or litellm.api_key |
|
or litellm.azure_key |
|
or get_secret_str("AZURE_OPENAI_API_KEY") |
|
or get_secret_str("AZURE_API_KEY") |
|
) |
|
|
|
extra_body = optional_params.get("extra_body", {}) |
|
if extra_body is not None: |
|
extra_body.pop("azure_ad_token", None) |
|
else: |
|
get_secret_str("AZURE_AD_TOKEN") |
|
|
|
response = azure_batches_instance.retrieve_batch( |
|
_is_async=_is_async, |
|
api_base=api_base, |
|
api_key=api_key, |
|
api_version=api_version, |
|
timeout=timeout, |
|
max_retries=optional_params.max_retries, |
|
retrieve_batch_data=_retrieve_batch_request, |
|
) |
|
elif custom_llm_provider == "vertex_ai": |
|
api_base = optional_params.api_base or "" |
|
vertex_ai_project = ( |
|
optional_params.vertex_project |
|
or litellm.vertex_project |
|
or get_secret_str("VERTEXAI_PROJECT") |
|
) |
|
vertex_ai_location = ( |
|
optional_params.vertex_location |
|
or litellm.vertex_location |
|
or get_secret_str("VERTEXAI_LOCATION") |
|
) |
|
vertex_credentials = optional_params.vertex_credentials or get_secret_str( |
|
"VERTEXAI_CREDENTIALS" |
|
) |
|
|
|
response = vertex_ai_batches_instance.retrieve_batch( |
|
_is_async=_is_async, |
|
batch_id=batch_id, |
|
api_base=api_base, |
|
vertex_project=vertex_ai_project, |
|
vertex_location=vertex_ai_location, |
|
vertex_credentials=vertex_credentials, |
|
timeout=timeout, |
|
max_retries=optional_params.max_retries, |
|
) |
|
else: |
|
raise litellm.exceptions.BadRequestError( |
|
message="LiteLLM doesn't support {} for 'create_batch'. Only 'openai' is supported.".format( |
|
custom_llm_provider |
|
), |
|
model="n/a", |
|
llm_provider=custom_llm_provider, |
|
response=httpx.Response( |
|
status_code=400, |
|
content="Unsupported provider", |
|
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), |
|
), |
|
) |
|
return response |
|
except Exception as e: |
|
raise e |
|
|
|
|
|
async def alist_batches( |
|
after: Optional[str] = None, |
|
limit: Optional[int] = None, |
|
custom_llm_provider: Literal["openai", "azure"] = "openai", |
|
metadata: Optional[Dict[str, str]] = None, |
|
extra_headers: Optional[Dict[str, str]] = None, |
|
extra_body: Optional[Dict[str, str]] = None, |
|
**kwargs, |
|
): |
|
""" |
|
Async: List your organization's batches. |
|
""" |
|
try: |
|
loop = asyncio.get_event_loop() |
|
kwargs["alist_batches"] = True |
|
|
|
|
|
func = partial( |
|
list_batches, |
|
after, |
|
limit, |
|
custom_llm_provider, |
|
extra_headers, |
|
extra_body, |
|
**kwargs, |
|
) |
|
|
|
|
|
ctx = contextvars.copy_context() |
|
func_with_context = partial(ctx.run, func) |
|
init_response = await loop.run_in_executor(None, func_with_context) |
|
if asyncio.iscoroutine(init_response): |
|
response = await init_response |
|
else: |
|
response = init_response |
|
|
|
return response |
|
except Exception as e: |
|
raise e |
|
|
|
|
|
def list_batches( |
|
after: Optional[str] = None, |
|
limit: Optional[int] = None, |
|
custom_llm_provider: Literal["openai", "azure"] = "openai", |
|
extra_headers: Optional[Dict[str, str]] = None, |
|
extra_body: Optional[Dict[str, str]] = None, |
|
**kwargs, |
|
): |
|
""" |
|
Lists batches |
|
|
|
List your organization's batches. |
|
""" |
|
try: |
|
|
|
optional_params = GenericLiteLLMParams(**kwargs) |
|
api_key = ( |
|
optional_params.api_key |
|
or litellm.api_key |
|
or litellm.openai_key |
|
or os.getenv("OPENAI_API_KEY") |
|
) |
|
|
|
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600 |
|
|
|
|
|
if ( |
|
timeout is not None |
|
and isinstance(timeout, httpx.Timeout) |
|
and supports_httpx_timeout(custom_llm_provider) is False |
|
): |
|
read_timeout = timeout.read or 600 |
|
timeout = read_timeout |
|
elif timeout is not None and not isinstance(timeout, httpx.Timeout): |
|
timeout = float(timeout) |
|
elif timeout is None: |
|
timeout = 600.0 |
|
|
|
_is_async = kwargs.pop("alist_batches", False) is True |
|
if custom_llm_provider == "openai": |
|
|
|
api_base = ( |
|
optional_params.api_base |
|
or litellm.api_base |
|
or os.getenv("OPENAI_API_BASE") |
|
or "https://api.openai.com/v1" |
|
) |
|
organization = ( |
|
optional_params.organization |
|
or litellm.organization |
|
or os.getenv("OPENAI_ORGANIZATION", None) |
|
or None |
|
) |
|
|
|
response = openai_batches_instance.list_batches( |
|
_is_async=_is_async, |
|
after=after, |
|
limit=limit, |
|
api_base=api_base, |
|
api_key=api_key, |
|
organization=organization, |
|
timeout=timeout, |
|
max_retries=optional_params.max_retries, |
|
) |
|
elif custom_llm_provider == "azure": |
|
api_base = optional_params.api_base or litellm.api_base or get_secret_str("AZURE_API_BASE") |
|
api_version = ( |
|
optional_params.api_version |
|
or litellm.api_version |
|
or get_secret_str("AZURE_API_VERSION") |
|
) |
|
|
|
api_key = ( |
|
optional_params.api_key |
|
or litellm.api_key |
|
or litellm.azure_key |
|
or get_secret_str("AZURE_OPENAI_API_KEY") |
|
or get_secret_str("AZURE_API_KEY") |
|
) |
|
|
|
extra_body = optional_params.get("extra_body", {}) |
|
if extra_body is not None: |
|
extra_body.pop("azure_ad_token", None) |
|
else: |
|
get_secret_str("AZURE_AD_TOKEN") |
|
|
|
response = azure_batches_instance.list_batches( |
|
_is_async=_is_async, |
|
api_base=api_base, |
|
api_key=api_key, |
|
api_version=api_version, |
|
timeout=timeout, |
|
max_retries=optional_params.max_retries, |
|
) |
|
else: |
|
raise litellm.exceptions.BadRequestError( |
|
message="LiteLLM doesn't support {} for 'list_batch'. Only 'openai' is supported.".format( |
|
custom_llm_provider |
|
), |
|
model="n/a", |
|
llm_provider=custom_llm_provider, |
|
response=httpx.Response( |
|
status_code=400, |
|
content="Unsupported provider", |
|
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), |
|
), |
|
) |
|
return response |
|
except Exception as e: |
|
raise e |
|
|
|
|
|
async def acancel_batch( |
|
batch_id: str, |
|
custom_llm_provider: Literal["openai", "azure"] = "openai", |
|
metadata: Optional[Dict[str, str]] = None, |
|
extra_headers: Optional[Dict[str, str]] = None, |
|
extra_body: Optional[Dict[str, str]] = None, |
|
**kwargs, |
|
) -> Batch: |
|
""" |
|
Async: Cancels a batch. |
|
|
|
LiteLLM Equivalent of POST https://api.openai.com/v1/batches/{batch_id}/cancel |
|
""" |
|
try: |
|
loop = asyncio.get_event_loop() |
|
kwargs["acancel_batch"] = True |
|
|
|
|
|
func = partial( |
|
cancel_batch, |
|
batch_id, |
|
custom_llm_provider, |
|
metadata, |
|
extra_headers, |
|
extra_body, |
|
**kwargs, |
|
) |
|
|
|
ctx = contextvars.copy_context() |
|
func_with_context = partial(ctx.run, func) |
|
init_response = await loop.run_in_executor(None, func_with_context) |
|
if asyncio.iscoroutine(init_response): |
|
response = await init_response |
|
else: |
|
response = init_response |
|
|
|
return response |
|
except Exception as e: |
|
raise e |
|
|
|
|
|
def cancel_batch( |
|
batch_id: str, |
|
custom_llm_provider: Literal["openai", "azure"] = "openai", |
|
metadata: Optional[Dict[str, str]] = None, |
|
extra_headers: Optional[Dict[str, str]] = None, |
|
extra_body: Optional[Dict[str, str]] = None, |
|
**kwargs, |
|
) -> Union[Batch, Coroutine[Any, Any, Batch]]: |
|
""" |
|
Cancels a batch. |
|
|
|
LiteLLM Equivalent of POST https://api.openai.com/v1/batches/{batch_id}/cancel |
|
""" |
|
try: |
|
optional_params = GenericLiteLLMParams(**kwargs) |
|
|
|
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600 |
|
|
|
|
|
if ( |
|
timeout is not None |
|
and isinstance(timeout, httpx.Timeout) |
|
and supports_httpx_timeout(custom_llm_provider) is False |
|
): |
|
read_timeout = timeout.read or 600 |
|
timeout = read_timeout |
|
elif timeout is not None and not isinstance(timeout, httpx.Timeout): |
|
timeout = float(timeout) |
|
elif timeout is None: |
|
timeout = 600.0 |
|
|
|
_cancel_batch_request = CancelBatchRequest( |
|
batch_id=batch_id, |
|
extra_headers=extra_headers, |
|
extra_body=extra_body, |
|
) |
|
|
|
_is_async = kwargs.pop("acancel_batch", False) is True |
|
api_base: Optional[str] = None |
|
if custom_llm_provider == "openai": |
|
api_base = ( |
|
optional_params.api_base |
|
or litellm.api_base |
|
or os.getenv("OPENAI_API_BASE") |
|
or "https://api.openai.com/v1" |
|
) |
|
organization = ( |
|
optional_params.organization |
|
or litellm.organization |
|
or os.getenv("OPENAI_ORGANIZATION", None) |
|
or None |
|
) |
|
api_key = ( |
|
optional_params.api_key |
|
or litellm.api_key |
|
or litellm.openai_key |
|
or os.getenv("OPENAI_API_KEY") |
|
) |
|
|
|
response = openai_batches_instance.cancel_batch( |
|
_is_async=_is_async, |
|
cancel_batch_data=_cancel_batch_request, |
|
api_base=api_base, |
|
api_key=api_key, |
|
organization=organization, |
|
timeout=timeout, |
|
max_retries=optional_params.max_retries, |
|
) |
|
elif custom_llm_provider == "azure": |
|
api_base = ( |
|
optional_params.api_base |
|
or litellm.api_base |
|
or get_secret_str("AZURE_API_BASE") |
|
) |
|
api_version = ( |
|
optional_params.api_version |
|
or litellm.api_version |
|
or get_secret_str("AZURE_API_VERSION") |
|
) |
|
|
|
api_key = ( |
|
optional_params.api_key |
|
or litellm.api_key |
|
or litellm.azure_key |
|
or get_secret_str("AZURE_OPENAI_API_KEY") |
|
or get_secret_str("AZURE_API_KEY") |
|
) |
|
|
|
extra_body = optional_params.get("extra_body", {}) |
|
if extra_body is not None: |
|
extra_body.pop("azure_ad_token", None) |
|
else: |
|
get_secret_str("AZURE_AD_TOKEN") |
|
|
|
response = azure_batches_instance.cancel_batch( |
|
_is_async=_is_async, |
|
api_base=api_base, |
|
api_key=api_key, |
|
api_version=api_version, |
|
timeout=timeout, |
|
max_retries=optional_params.max_retries, |
|
cancel_batch_data=_cancel_batch_request, |
|
) |
|
else: |
|
raise litellm.exceptions.BadRequestError( |
|
message="LiteLLM doesn't support {} for 'cancel_batch'. Only 'openai' and 'azure' are supported.".format( |
|
custom_llm_provider |
|
), |
|
model="n/a", |
|
llm_provider=custom_llm_provider, |
|
response=httpx.Response( |
|
status_code=400, |
|
content="Unsupported provider", |
|
request=httpx.Request(method="cancel_batch", url="https://github.com/BerriAI/litellm"), |
|
), |
|
) |
|
return response |
|
except Exception as e: |
|
raise e |
|
|