File size: 27,891 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
"""
Main File for Batches API implementation

https://platform.openai.com/docs/api-reference/batch

- create_batch()
- retrieve_batch()
- cancel_batch()
- list_batch()

"""

import asyncio
import contextvars
import os
from functools import partial
from typing import Any, Coroutine, Dict, Literal, Optional, Union

import httpx

import litellm
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.llms.azure.batches.handler import AzureBatchesAPI
from litellm.llms.openai.openai import OpenAIBatchesAPI
from litellm.llms.vertex_ai.batches.handler import VertexAIBatchPrediction
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.openai import (
    Batch,
    CancelBatchRequest,
    CreateBatchRequest,
    RetrieveBatchRequest,
)
from litellm.types.router import GenericLiteLLMParams
from litellm.utils import client, get_litellm_params, supports_httpx_timeout

from .batch_utils import batches_async_logging

####### ENVIRONMENT VARIABLES ###################
openai_batches_instance = OpenAIBatchesAPI()
azure_batches_instance = AzureBatchesAPI()
vertex_ai_batches_instance = VertexAIBatchPrediction(gcs_bucket_name="")
#################################################


@client
async def acreate_batch(
    completion_window: Literal["24h"],
    endpoint: Literal["/v1/chat/completions", "/v1/embeddings", "/v1/completions"],
    input_file_id: str,
    custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
    metadata: Optional[Dict[str, str]] = None,
    extra_headers: Optional[Dict[str, str]] = None,
    extra_body: Optional[Dict[str, str]] = None,
    **kwargs,
) -> Batch:
    """
    Async: Creates and executes a batch from an uploaded file of request

    LiteLLM Equivalent of POST: https://api.openai.com/v1/batches
    """
    try:
        loop = asyncio.get_event_loop()
        kwargs["acreate_batch"] = True

        # Use a partial function to pass your keyword arguments
        func = partial(
            create_batch,
            completion_window,
            endpoint,
            input_file_id,
            custom_llm_provider,
            metadata,
            extra_headers,
            extra_body,
            **kwargs,
        )

        # Add the context to the function
        ctx = contextvars.copy_context()
        func_with_context = partial(ctx.run, func)
        init_response = await loop.run_in_executor(None, func_with_context)

        if asyncio.iscoroutine(init_response):
            response = await init_response
        else:
            response = init_response

        # Start async logging job
        if response is not None:
            asyncio.create_task(
                batches_async_logging(
                    logging_obj=kwargs.get("litellm_logging_obj", None),
                    batch_id=response.id,
                    custom_llm_provider=custom_llm_provider,
                    **kwargs,
                )
            )

        return response
    except Exception as e:
        raise e


@client
def create_batch(
    completion_window: Literal["24h"],
    endpoint: Literal["/v1/chat/completions", "/v1/embeddings", "/v1/completions"],
    input_file_id: str,
    custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
    metadata: Optional[Dict[str, str]] = None,
    extra_headers: Optional[Dict[str, str]] = None,
    extra_body: Optional[Dict[str, str]] = None,
    **kwargs,
) -> Union[Batch, Coroutine[Any, Any, Batch]]:
    """
    Creates and executes a batch from an uploaded file of request

    LiteLLM Equivalent of POST: https://api.openai.com/v1/batches
    """
    try:
        optional_params = GenericLiteLLMParams(**kwargs)
        _is_async = kwargs.pop("acreate_batch", False) is True
        litellm_logging_obj: LiteLLMLoggingObj = kwargs.get("litellm_logging_obj", None)
        ### TIMEOUT LOGIC ###
        timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600
        litellm_params = get_litellm_params(
            custom_llm_provider=custom_llm_provider,
            litellm_call_id=kwargs.get("litellm_call_id", None),
            litellm_trace_id=kwargs.get("litellm_trace_id"),
            litellm_metadata=kwargs.get("litellm_metadata"),
        )
        litellm_logging_obj.update_environment_variables(
            model=None,
            user=None,
            optional_params=optional_params.model_dump(),
            litellm_params=litellm_params,
            custom_llm_provider=custom_llm_provider,
        )

        if (
            timeout is not None
            and isinstance(timeout, httpx.Timeout)
            and supports_httpx_timeout(custom_llm_provider) is False
        ):
            read_timeout = timeout.read or 600
            timeout = read_timeout  # default 10 min timeout
        elif timeout is not None and not isinstance(timeout, httpx.Timeout):
            timeout = float(timeout)  # type: ignore
        elif timeout is None:
            timeout = 600.0

        _create_batch_request = CreateBatchRequest(
            completion_window=completion_window,
            endpoint=endpoint,
            input_file_id=input_file_id,
            metadata=metadata,
            extra_headers=extra_headers,
            extra_body=extra_body,
        )
        api_base: Optional[str] = None
        if custom_llm_provider == "openai":

            # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
            api_base = (
                optional_params.api_base
                or litellm.api_base
                or os.getenv("OPENAI_API_BASE")
                or "https://api.openai.com/v1"
            )
            organization = (
                optional_params.organization
                or litellm.organization
                or os.getenv("OPENAI_ORGANIZATION", None)
                or None  # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
            )
            # set API KEY
            api_key = (
                optional_params.api_key
                or litellm.api_key  # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
                or litellm.openai_key
                or os.getenv("OPENAI_API_KEY")
            )

            response = openai_batches_instance.create_batch(
                api_base=api_base,
                api_key=api_key,
                organization=organization,
                create_batch_data=_create_batch_request,
                timeout=timeout,
                max_retries=optional_params.max_retries,
                _is_async=_is_async,
            )
        elif custom_llm_provider == "azure":
            api_base = (
                optional_params.api_base
                or litellm.api_base
                or get_secret_str("AZURE_API_BASE")
            )
            api_version = (
                optional_params.api_version
                or litellm.api_version
                or get_secret_str("AZURE_API_VERSION")
            )

            api_key = (
                optional_params.api_key
                or litellm.api_key
                or litellm.azure_key
                or get_secret_str("AZURE_OPENAI_API_KEY")
                or get_secret_str("AZURE_API_KEY")
            )

            extra_body = optional_params.get("extra_body", {})
            if extra_body is not None:
                extra_body.pop("azure_ad_token", None)
            else:
                get_secret_str("AZURE_AD_TOKEN")  # type: ignore

            response = azure_batches_instance.create_batch(
                _is_async=_is_async,
                api_base=api_base,
                api_key=api_key,
                api_version=api_version,
                timeout=timeout,
                max_retries=optional_params.max_retries,
                create_batch_data=_create_batch_request,
            )
        elif custom_llm_provider == "vertex_ai":
            api_base = optional_params.api_base or ""
            vertex_ai_project = (
                optional_params.vertex_project
                or litellm.vertex_project
                or get_secret_str("VERTEXAI_PROJECT")
            )
            vertex_ai_location = (
                optional_params.vertex_location
                or litellm.vertex_location
                or get_secret_str("VERTEXAI_LOCATION")
            )
            vertex_credentials = optional_params.vertex_credentials or get_secret_str(
                "VERTEXAI_CREDENTIALS"
            )

            response = vertex_ai_batches_instance.create_batch(
                _is_async=_is_async,
                api_base=api_base,
                vertex_project=vertex_ai_project,
                vertex_location=vertex_ai_location,
                vertex_credentials=vertex_credentials,
                timeout=timeout,
                max_retries=optional_params.max_retries,
                create_batch_data=_create_batch_request,
            )
        else:
            raise litellm.exceptions.BadRequestError(
                message="LiteLLM doesn't support custom_llm_provider={} for 'create_batch'".format(
                    custom_llm_provider
                ),
                model="n/a",
                llm_provider=custom_llm_provider,
                response=httpx.Response(
                    status_code=400,
                    content="Unsupported provider",
                    request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"),  # type: ignore
                ),
            )
        return response
    except Exception as e:
        raise e


async def aretrieve_batch(
    batch_id: str,
    custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
    metadata: Optional[Dict[str, str]] = None,
    extra_headers: Optional[Dict[str, str]] = None,
    extra_body: Optional[Dict[str, str]] = None,
    **kwargs,
) -> Batch:
    """
    Async: Retrieves a batch.

    LiteLLM Equivalent of GET https://api.openai.com/v1/batches/{batch_id}
    """
    try:
        loop = asyncio.get_event_loop()
        kwargs["aretrieve_batch"] = True

        # Use a partial function to pass your keyword arguments
        func = partial(
            retrieve_batch,
            batch_id,
            custom_llm_provider,
            metadata,
            extra_headers,
            extra_body,
            **kwargs,
        )
        # Add the context to the function
        ctx = contextvars.copy_context()
        func_with_context = partial(ctx.run, func)
        init_response = await loop.run_in_executor(None, func_with_context)
        if asyncio.iscoroutine(init_response):
            response = await init_response
        else:
            response = init_response  # type: ignore

        return response
    except Exception as e:
        raise e


def retrieve_batch(
    batch_id: str,
    custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
    metadata: Optional[Dict[str, str]] = None,
    extra_headers: Optional[Dict[str, str]] = None,
    extra_body: Optional[Dict[str, str]] = None,
    **kwargs,
) -> Union[Batch, Coroutine[Any, Any, Batch]]:
    """
    Retrieves a batch.

    LiteLLM Equivalent of GET https://api.openai.com/v1/batches/{batch_id}
    """
    try:
        optional_params = GenericLiteLLMParams(**kwargs)
        ### TIMEOUT LOGIC ###
        timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600
        # set timeout for 10 minutes by default

        if (
            timeout is not None
            and isinstance(timeout, httpx.Timeout)
            and supports_httpx_timeout(custom_llm_provider) is False
        ):
            read_timeout = timeout.read or 600
            timeout = read_timeout  # default 10 min timeout
        elif timeout is not None and not isinstance(timeout, httpx.Timeout):
            timeout = float(timeout)  # type: ignore
        elif timeout is None:
            timeout = 600.0

        _retrieve_batch_request = RetrieveBatchRequest(
            batch_id=batch_id,
            extra_headers=extra_headers,
            extra_body=extra_body,
        )

        _is_async = kwargs.pop("aretrieve_batch", False) is True
        api_base: Optional[str] = None
        if custom_llm_provider == "openai":

            # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
            api_base = (
                optional_params.api_base
                or litellm.api_base
                or os.getenv("OPENAI_API_BASE")
                or "https://api.openai.com/v1"
            )
            organization = (
                optional_params.organization
                or litellm.organization
                or os.getenv("OPENAI_ORGANIZATION", None)
                or None  # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
            )
            # set API KEY
            api_key = (
                optional_params.api_key
                or litellm.api_key  # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
                or litellm.openai_key
                or os.getenv("OPENAI_API_KEY")
            )

            response = openai_batches_instance.retrieve_batch(
                _is_async=_is_async,
                retrieve_batch_data=_retrieve_batch_request,
                api_base=api_base,
                api_key=api_key,
                organization=organization,
                timeout=timeout,
                max_retries=optional_params.max_retries,
            )
        elif custom_llm_provider == "azure":
            api_base = (
                optional_params.api_base
                or litellm.api_base
                or get_secret_str("AZURE_API_BASE")
            )
            api_version = (
                optional_params.api_version
                or litellm.api_version
                or get_secret_str("AZURE_API_VERSION")
            )

            api_key = (
                optional_params.api_key
                or litellm.api_key
                or litellm.azure_key
                or get_secret_str("AZURE_OPENAI_API_KEY")
                or get_secret_str("AZURE_API_KEY")
            )

            extra_body = optional_params.get("extra_body", {})
            if extra_body is not None:
                extra_body.pop("azure_ad_token", None)
            else:
                get_secret_str("AZURE_AD_TOKEN")  # type: ignore

            response = azure_batches_instance.retrieve_batch(
                _is_async=_is_async,
                api_base=api_base,
                api_key=api_key,
                api_version=api_version,
                timeout=timeout,
                max_retries=optional_params.max_retries,
                retrieve_batch_data=_retrieve_batch_request,
            )
        elif custom_llm_provider == "vertex_ai":
            api_base = optional_params.api_base or ""
            vertex_ai_project = (
                optional_params.vertex_project
                or litellm.vertex_project
                or get_secret_str("VERTEXAI_PROJECT")
            )
            vertex_ai_location = (
                optional_params.vertex_location
                or litellm.vertex_location
                or get_secret_str("VERTEXAI_LOCATION")
            )
            vertex_credentials = optional_params.vertex_credentials or get_secret_str(
                "VERTEXAI_CREDENTIALS"
            )

            response = vertex_ai_batches_instance.retrieve_batch(
                _is_async=_is_async,
                batch_id=batch_id,
                api_base=api_base,
                vertex_project=vertex_ai_project,
                vertex_location=vertex_ai_location,
                vertex_credentials=vertex_credentials,
                timeout=timeout,
                max_retries=optional_params.max_retries,
            )
        else:
            raise litellm.exceptions.BadRequestError(
                message="LiteLLM doesn't support {} for 'create_batch'. Only 'openai' is supported.".format(
                    custom_llm_provider
                ),
                model="n/a",
                llm_provider=custom_llm_provider,
                response=httpx.Response(
                    status_code=400,
                    content="Unsupported provider",
                    request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"),  # type: ignore
                ),
            )
        return response
    except Exception as e:
        raise e


async def alist_batches(
    after: Optional[str] = None,
    limit: Optional[int] = None,
    custom_llm_provider: Literal["openai", "azure"] = "openai",
    metadata: Optional[Dict[str, str]] = None,
    extra_headers: Optional[Dict[str, str]] = None,
    extra_body: Optional[Dict[str, str]] = None,
    **kwargs,
):
    """
    Async: List your organization's batches.
    """
    try:
        loop = asyncio.get_event_loop()
        kwargs["alist_batches"] = True

        # Use a partial function to pass your keyword arguments
        func = partial(
            list_batches,
            after,
            limit,
            custom_llm_provider,
            extra_headers,
            extra_body,
            **kwargs,
        )

        # Add the context to the function
        ctx = contextvars.copy_context()
        func_with_context = partial(ctx.run, func)
        init_response = await loop.run_in_executor(None, func_with_context)
        if asyncio.iscoroutine(init_response):
            response = await init_response
        else:
            response = init_response  # type: ignore

        return response
    except Exception as e:
        raise e


def list_batches(
    after: Optional[str] = None,
    limit: Optional[int] = None,
    custom_llm_provider: Literal["openai", "azure"] = "openai",
    extra_headers: Optional[Dict[str, str]] = None,
    extra_body: Optional[Dict[str, str]] = None,
    **kwargs,
):
    """
    Lists batches

    List your organization's batches.
    """
    try:
        # set API KEY
        optional_params = GenericLiteLLMParams(**kwargs)
        api_key = (
            optional_params.api_key
            or litellm.api_key  # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
            or litellm.openai_key
            or os.getenv("OPENAI_API_KEY")
        )
        ### TIMEOUT LOGIC ###
        timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600
        # set timeout for 10 minutes by default

        if (
            timeout is not None
            and isinstance(timeout, httpx.Timeout)
            and supports_httpx_timeout(custom_llm_provider) is False
        ):
            read_timeout = timeout.read or 600
            timeout = read_timeout  # default 10 min timeout
        elif timeout is not None and not isinstance(timeout, httpx.Timeout):
            timeout = float(timeout)  # type: ignore
        elif timeout is None:
            timeout = 600.0

        _is_async = kwargs.pop("alist_batches", False) is True
        if custom_llm_provider == "openai":
            # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
            api_base = (
                optional_params.api_base
                or litellm.api_base
                or os.getenv("OPENAI_API_BASE")
                or "https://api.openai.com/v1"
            )
            organization = (
                optional_params.organization
                or litellm.organization
                or os.getenv("OPENAI_ORGANIZATION", None)
                or None  # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
            )

            response = openai_batches_instance.list_batches(
                _is_async=_is_async,
                after=after,
                limit=limit,
                api_base=api_base,
                api_key=api_key,
                organization=organization,
                timeout=timeout,
                max_retries=optional_params.max_retries,
            )
        elif custom_llm_provider == "azure":
            api_base = optional_params.api_base or litellm.api_base or get_secret_str("AZURE_API_BASE")  # type: ignore
            api_version = (
                optional_params.api_version
                or litellm.api_version
                or get_secret_str("AZURE_API_VERSION")
            )

            api_key = (
                optional_params.api_key
                or litellm.api_key
                or litellm.azure_key
                or get_secret_str("AZURE_OPENAI_API_KEY")
                or get_secret_str("AZURE_API_KEY")
            )

            extra_body = optional_params.get("extra_body", {})
            if extra_body is not None:
                extra_body.pop("azure_ad_token", None)
            else:
                get_secret_str("AZURE_AD_TOKEN")  # type: ignore

            response = azure_batches_instance.list_batches(
                _is_async=_is_async,
                api_base=api_base,
                api_key=api_key,
                api_version=api_version,
                timeout=timeout,
                max_retries=optional_params.max_retries,
            )
        else:
            raise litellm.exceptions.BadRequestError(
                message="LiteLLM doesn't support {} for 'list_batch'. Only 'openai' is supported.".format(
                    custom_llm_provider
                ),
                model="n/a",
                llm_provider=custom_llm_provider,
                response=httpx.Response(
                    status_code=400,
                    content="Unsupported provider",
                    request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"),  # type: ignore
                ),
            )
        return response
    except Exception as e:
        raise e


async def acancel_batch(
    batch_id: str,
    custom_llm_provider: Literal["openai", "azure"] = "openai",
    metadata: Optional[Dict[str, str]] = None,
    extra_headers: Optional[Dict[str, str]] = None,
    extra_body: Optional[Dict[str, str]] = None,
    **kwargs,
) -> Batch:
    """
    Async: Cancels a batch.

    LiteLLM Equivalent of POST https://api.openai.com/v1/batches/{batch_id}/cancel
    """
    try:
        loop = asyncio.get_event_loop()
        kwargs["acancel_batch"] = True

        # Use a partial function to pass your keyword arguments
        func = partial(
            cancel_batch,
            batch_id,
            custom_llm_provider,
            metadata,
            extra_headers,
            extra_body,
            **kwargs,
        )
        # Add the context to the function
        ctx = contextvars.copy_context()
        func_with_context = partial(ctx.run, func)
        init_response = await loop.run_in_executor(None, func_with_context)
        if asyncio.iscoroutine(init_response):
            response = await init_response
        else:
            response = init_response

        return response
    except Exception as e:
        raise e


def cancel_batch(
    batch_id: str,
    custom_llm_provider: Literal["openai", "azure"] = "openai",
    metadata: Optional[Dict[str, str]] = None,
    extra_headers: Optional[Dict[str, str]] = None,
    extra_body: Optional[Dict[str, str]] = None,
    **kwargs,
) -> Union[Batch, Coroutine[Any, Any, Batch]]:
    """
    Cancels a batch.

    LiteLLM Equivalent of POST https://api.openai.com/v1/batches/{batch_id}/cancel
    """
    try:
        optional_params = GenericLiteLLMParams(**kwargs)
        ### TIMEOUT LOGIC ###
        timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600
        # set timeout for 10 minutes by default

        if (
            timeout is not None
            and isinstance(timeout, httpx.Timeout)
            and supports_httpx_timeout(custom_llm_provider) is False
        ):
            read_timeout = timeout.read or 600
            timeout = read_timeout  # default 10 min timeout
        elif timeout is not None and not isinstance(timeout, httpx.Timeout):
            timeout = float(timeout)  # type: ignore
        elif timeout is None:
            timeout = 600.0

        _cancel_batch_request = CancelBatchRequest(
            batch_id=batch_id,
            extra_headers=extra_headers,
            extra_body=extra_body,
        )

        _is_async = kwargs.pop("acancel_batch", False) is True
        api_base: Optional[str] = None
        if custom_llm_provider == "openai":
            api_base = (
                optional_params.api_base
                or litellm.api_base
                or os.getenv("OPENAI_API_BASE")
                or "https://api.openai.com/v1"
            )
            organization = (
                optional_params.organization
                or litellm.organization
                or os.getenv("OPENAI_ORGANIZATION", None)
                or None
            )
            api_key = (
                optional_params.api_key
                or litellm.api_key
                or litellm.openai_key
                or os.getenv("OPENAI_API_KEY")
            )

            response = openai_batches_instance.cancel_batch(
                _is_async=_is_async,
                cancel_batch_data=_cancel_batch_request,
                api_base=api_base,
                api_key=api_key,
                organization=organization,
                timeout=timeout,
                max_retries=optional_params.max_retries,
            )
        elif custom_llm_provider == "azure":
            api_base = (
                optional_params.api_base
                or litellm.api_base
                or get_secret_str("AZURE_API_BASE")
            )
            api_version = (
                optional_params.api_version
                or litellm.api_version
                or get_secret_str("AZURE_API_VERSION")
            )

            api_key = (
                optional_params.api_key
                or litellm.api_key
                or litellm.azure_key
                or get_secret_str("AZURE_OPENAI_API_KEY")
                or get_secret_str("AZURE_API_KEY")
            )

            extra_body = optional_params.get("extra_body", {})
            if extra_body is not None:
                extra_body.pop("azure_ad_token", None)
            else:
                get_secret_str("AZURE_AD_TOKEN")  # type: ignore

            response = azure_batches_instance.cancel_batch(
                _is_async=_is_async,
                api_base=api_base,
                api_key=api_key,
                api_version=api_version,
                timeout=timeout,
                max_retries=optional_params.max_retries,
                cancel_batch_data=_cancel_batch_request,
            )
        else:
            raise litellm.exceptions.BadRequestError(
                message="LiteLLM doesn't support {} for 'cancel_batch'. Only 'openai' and 'azure' are supported.".format(
                    custom_llm_provider
                ),
                model="n/a",
                llm_provider=custom_llm_provider,
                response=httpx.Response(
                    status_code=400,
                    content="Unsupported provider",
                    request=httpx.Request(method="cancel_batch", url="https://github.com/BerriAI/litellm"),  # type: ignore
                ),
            )
        return response
    except Exception as e:
        raise e