TestLLM / litellm /batches /batch_utils.py
Raju2024's picture
Upload 1072 files
e3278e4 verified
raw
history blame
10.1 kB
import asyncio
import datetime
import json
import threading
from typing import Any, List, Literal, Optional
import litellm
from litellm._logging import verbose_logger
from litellm.constants import (
BATCH_STATUS_POLL_INTERVAL_SECONDS,
BATCH_STATUS_POLL_MAX_ATTEMPTS,
)
from litellm.files.main import afile_content
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.types.llms.openai import Batch
from litellm.types.utils import StandardLoggingPayload, Usage
async def batches_async_logging(
batch_id: str,
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
logging_obj: Optional[LiteLLMLoggingObj] = None,
**kwargs,
):
"""
Async Job waits for the batch to complete and then logs the completed batch usage - cost, total tokens, prompt tokens, completion tokens
Polls retrieve_batch until it returns a batch with status "completed" or "failed"
"""
from .main import aretrieve_batch
verbose_logger.debug(
".....in _batches_async_logging... polling retrieve to get batch status"
)
if logging_obj is None:
raise ValueError(
"logging_obj is None cannot calculate cost / log batch creation event"
)
for _ in range(BATCH_STATUS_POLL_MAX_ATTEMPTS):
try:
start_time = datetime.datetime.now()
batch: Batch = await aretrieve_batch(batch_id, custom_llm_provider)
verbose_logger.debug(
"in _batches_async_logging... batch status= %s", batch.status
)
if batch.status == "completed":
end_time = datetime.datetime.now()
await _handle_completed_batch(
batch=batch,
custom_llm_provider=custom_llm_provider,
logging_obj=logging_obj,
start_time=start_time,
end_time=end_time,
**kwargs,
)
break
elif batch.status == "failed":
pass
except Exception as e:
verbose_logger.error("error in batches_async_logging", e)
await asyncio.sleep(BATCH_STATUS_POLL_INTERVAL_SECONDS)
async def _handle_completed_batch(
batch: Batch,
custom_llm_provider: Literal["openai", "azure", "vertex_ai"],
logging_obj: LiteLLMLoggingObj,
start_time: datetime.datetime,
end_time: datetime.datetime,
**kwargs,
) -> None:
"""Helper function to process a completed batch and handle logging"""
# Get batch results
file_content_dictionary = await _get_batch_output_file_content_as_dictionary(
batch, custom_llm_provider
)
# Calculate costs and usage
batch_cost = await _batch_cost_calculator(
custom_llm_provider=custom_llm_provider,
file_content_dictionary=file_content_dictionary,
)
batch_usage = _get_batch_job_total_usage_from_file_content(
file_content_dictionary=file_content_dictionary,
custom_llm_provider=custom_llm_provider,
)
# Handle logging
await _log_completed_batch(
logging_obj=logging_obj,
batch_usage=batch_usage,
batch_cost=batch_cost,
start_time=start_time,
end_time=end_time,
**kwargs,
)
async def _log_completed_batch(
logging_obj: LiteLLMLoggingObj,
batch_usage: Usage,
batch_cost: float,
start_time: datetime.datetime,
end_time: datetime.datetime,
**kwargs,
) -> None:
"""Helper function to handle all logging operations for a completed batch"""
logging_obj.call_type = "batch_success"
standard_logging_object = _create_standard_logging_object_for_completed_batch(
kwargs=kwargs,
start_time=start_time,
end_time=end_time,
logging_obj=logging_obj,
batch_usage_object=batch_usage,
response_cost=batch_cost,
)
logging_obj.model_call_details["standard_logging_object"] = standard_logging_object
# Launch async and sync logging handlers
asyncio.create_task(
logging_obj.async_success_handler(
result=None,
start_time=start_time,
end_time=end_time,
cache_hit=None,
)
)
threading.Thread(
target=logging_obj.success_handler,
args=(None, start_time, end_time),
).start()
async def _batch_cost_calculator(
file_content_dictionary: List[dict],
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
) -> float:
"""
Calculate the cost of a batch based on the output file id
"""
if custom_llm_provider == "vertex_ai":
raise ValueError("Vertex AI does not support file content retrieval")
total_cost = _get_batch_job_cost_from_file_content(
file_content_dictionary=file_content_dictionary,
custom_llm_provider=custom_llm_provider,
)
verbose_logger.debug("total_cost=%s", total_cost)
return total_cost
async def _get_batch_output_file_content_as_dictionary(
batch: Batch,
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
) -> List[dict]:
"""
Get the batch output file content as a list of dictionaries
"""
if custom_llm_provider == "vertex_ai":
raise ValueError("Vertex AI does not support file content retrieval")
if batch.output_file_id is None:
raise ValueError("Output file id is None cannot retrieve file content")
_file_content = await afile_content(
file_id=batch.output_file_id,
custom_llm_provider=custom_llm_provider,
)
return _get_file_content_as_dictionary(_file_content.content)
def _get_file_content_as_dictionary(file_content: bytes) -> List[dict]:
"""
Get the file content as a list of dictionaries from JSON Lines format
"""
try:
_file_content_str = file_content.decode("utf-8")
# Split by newlines and parse each line as a separate JSON object
json_objects = []
for line in _file_content_str.strip().split("\n"):
if line: # Skip empty lines
json_objects.append(json.loads(line))
verbose_logger.debug("json_objects=%s", json.dumps(json_objects, indent=4))
return json_objects
except Exception as e:
raise e
def _get_batch_job_cost_from_file_content(
file_content_dictionary: List[dict],
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
) -> float:
"""
Get the cost of a batch job from the file content
"""
try:
total_cost: float = 0.0
# parse the file content as json
verbose_logger.debug(
"file_content_dictionary=%s", json.dumps(file_content_dictionary, indent=4)
)
for _item in file_content_dictionary:
if _batch_response_was_successful(_item):
_response_body = _get_response_from_batch_job_output_file(_item)
total_cost += litellm.completion_cost(
completion_response=_response_body,
custom_llm_provider=custom_llm_provider,
)
verbose_logger.debug("total_cost=%s", total_cost)
return total_cost
except Exception as e:
verbose_logger.error("error in _get_batch_job_cost_from_file_content", e)
raise e
def _get_batch_job_total_usage_from_file_content(
file_content_dictionary: List[dict],
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
) -> Usage:
"""
Get the tokens of a batch job from the file content
"""
total_tokens: int = 0
prompt_tokens: int = 0
completion_tokens: int = 0
for _item in file_content_dictionary:
if _batch_response_was_successful(_item):
_response_body = _get_response_from_batch_job_output_file(_item)
usage: Usage = _get_batch_job_usage_from_response_body(_response_body)
total_tokens += usage.total_tokens
prompt_tokens += usage.prompt_tokens
completion_tokens += usage.completion_tokens
return Usage(
total_tokens=total_tokens,
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
)
def _get_batch_job_usage_from_response_body(response_body: dict) -> Usage:
"""
Get the tokens of a batch job from the response body
"""
_usage_dict = response_body.get("usage", None) or {}
usage: Usage = Usage(**_usage_dict)
return usage
def _get_response_from_batch_job_output_file(batch_job_output_file: dict) -> Any:
"""
Get the response from the batch job output file
"""
_response: dict = batch_job_output_file.get("response", None) or {}
_response_body = _response.get("body", None) or {}
return _response_body
def _batch_response_was_successful(batch_job_output_file: dict) -> bool:
"""
Check if the batch job response status == 200
"""
_response: dict = batch_job_output_file.get("response", None) or {}
return _response.get("status_code", None) == 200
def _create_standard_logging_object_for_completed_batch(
kwargs: dict,
start_time: datetime.datetime,
end_time: datetime.datetime,
logging_obj: LiteLLMLoggingObj,
batch_usage_object: Usage,
response_cost: float,
) -> StandardLoggingPayload:
"""
Create a standard logging object for a completed batch
"""
standard_logging_object = logging_obj.model_call_details.get(
"standard_logging_object", None
)
if standard_logging_object is None:
raise ValueError("unable to create standard logging object for completed batch")
# Add Completed Batch Job Usage and Response Cost
standard_logging_object["call_type"] = "batch_success"
standard_logging_object["response_cost"] = response_cost
standard_logging_object["total_tokens"] = batch_usage_object.total_tokens
standard_logging_object["prompt_tokens"] = batch_usage_object.prompt_tokens
standard_logging_object["completion_tokens"] = batch_usage_object.completion_tokens
return standard_logging_object