File size: 10,127 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import asyncio
import datetime
import json
import threading
from typing import Any, List, Literal, Optional

import litellm
from litellm._logging import verbose_logger
from litellm.constants import (
    BATCH_STATUS_POLL_INTERVAL_SECONDS,
    BATCH_STATUS_POLL_MAX_ATTEMPTS,
)
from litellm.files.main import afile_content
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.types.llms.openai import Batch
from litellm.types.utils import StandardLoggingPayload, Usage


async def batches_async_logging(
    batch_id: str,
    custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
    logging_obj: Optional[LiteLLMLoggingObj] = None,
    **kwargs,
):
    """
    Async Job waits for the batch to complete and then logs the completed batch usage - cost, total tokens, prompt tokens, completion tokens


    Polls retrieve_batch until it returns a batch with status "completed" or "failed"
    """
    from .main import aretrieve_batch

    verbose_logger.debug(
        ".....in _batches_async_logging... polling retrieve to get batch status"
    )
    if logging_obj is None:
        raise ValueError(
            "logging_obj is None cannot calculate cost / log batch creation event"
        )
    for _ in range(BATCH_STATUS_POLL_MAX_ATTEMPTS):
        try:
            start_time = datetime.datetime.now()
            batch: Batch = await aretrieve_batch(batch_id, custom_llm_provider)
            verbose_logger.debug(
                "in _batches_async_logging... batch status= %s", batch.status
            )

            if batch.status == "completed":
                end_time = datetime.datetime.now()
                await _handle_completed_batch(
                    batch=batch,
                    custom_llm_provider=custom_llm_provider,
                    logging_obj=logging_obj,
                    start_time=start_time,
                    end_time=end_time,
                    **kwargs,
                )
                break
            elif batch.status == "failed":
                pass
        except Exception as e:
            verbose_logger.error("error in batches_async_logging", e)
        await asyncio.sleep(BATCH_STATUS_POLL_INTERVAL_SECONDS)


async def _handle_completed_batch(
    batch: Batch,
    custom_llm_provider: Literal["openai", "azure", "vertex_ai"],
    logging_obj: LiteLLMLoggingObj,
    start_time: datetime.datetime,
    end_time: datetime.datetime,
    **kwargs,
) -> None:
    """Helper function to process a completed batch and handle logging"""
    # Get batch results
    file_content_dictionary = await _get_batch_output_file_content_as_dictionary(
        batch, custom_llm_provider
    )

    # Calculate costs and usage
    batch_cost = await _batch_cost_calculator(
        custom_llm_provider=custom_llm_provider,
        file_content_dictionary=file_content_dictionary,
    )
    batch_usage = _get_batch_job_total_usage_from_file_content(
        file_content_dictionary=file_content_dictionary,
        custom_llm_provider=custom_llm_provider,
    )

    # Handle logging
    await _log_completed_batch(
        logging_obj=logging_obj,
        batch_usage=batch_usage,
        batch_cost=batch_cost,
        start_time=start_time,
        end_time=end_time,
        **kwargs,
    )


async def _log_completed_batch(
    logging_obj: LiteLLMLoggingObj,
    batch_usage: Usage,
    batch_cost: float,
    start_time: datetime.datetime,
    end_time: datetime.datetime,
    **kwargs,
) -> None:
    """Helper function to handle all logging operations for a completed batch"""
    logging_obj.call_type = "batch_success"

    standard_logging_object = _create_standard_logging_object_for_completed_batch(
        kwargs=kwargs,
        start_time=start_time,
        end_time=end_time,
        logging_obj=logging_obj,
        batch_usage_object=batch_usage,
        response_cost=batch_cost,
    )

    logging_obj.model_call_details["standard_logging_object"] = standard_logging_object

    # Launch async and sync logging handlers
    asyncio.create_task(
        logging_obj.async_success_handler(
            result=None,
            start_time=start_time,
            end_time=end_time,
            cache_hit=None,
        )
    )
    threading.Thread(
        target=logging_obj.success_handler,
        args=(None, start_time, end_time),
    ).start()


async def _batch_cost_calculator(
    file_content_dictionary: List[dict],
    custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
) -> float:
    """
    Calculate the cost of a batch based on the output file id
    """
    if custom_llm_provider == "vertex_ai":
        raise ValueError("Vertex AI does not support file content retrieval")
    total_cost = _get_batch_job_cost_from_file_content(
        file_content_dictionary=file_content_dictionary,
        custom_llm_provider=custom_llm_provider,
    )
    verbose_logger.debug("total_cost=%s", total_cost)
    return total_cost


async def _get_batch_output_file_content_as_dictionary(
    batch: Batch,
    custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
) -> List[dict]:
    """
    Get the batch output file content as a list of dictionaries
    """
    if custom_llm_provider == "vertex_ai":
        raise ValueError("Vertex AI does not support file content retrieval")

    if batch.output_file_id is None:
        raise ValueError("Output file id is None cannot retrieve file content")

    _file_content = await afile_content(
        file_id=batch.output_file_id,
        custom_llm_provider=custom_llm_provider,
    )
    return _get_file_content_as_dictionary(_file_content.content)


def _get_file_content_as_dictionary(file_content: bytes) -> List[dict]:
    """
    Get the file content as a list of dictionaries from JSON Lines format
    """
    try:
        _file_content_str = file_content.decode("utf-8")
        # Split by newlines and parse each line as a separate JSON object
        json_objects = []
        for line in _file_content_str.strip().split("\n"):
            if line:  # Skip empty lines
                json_objects.append(json.loads(line))
        verbose_logger.debug("json_objects=%s", json.dumps(json_objects, indent=4))
        return json_objects
    except Exception as e:
        raise e


def _get_batch_job_cost_from_file_content(
    file_content_dictionary: List[dict],
    custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
) -> float:
    """
    Get the cost of a batch job from the file content
    """
    try:
        total_cost: float = 0.0
        # parse the file content as json
        verbose_logger.debug(
            "file_content_dictionary=%s", json.dumps(file_content_dictionary, indent=4)
        )
        for _item in file_content_dictionary:
            if _batch_response_was_successful(_item):
                _response_body = _get_response_from_batch_job_output_file(_item)
                total_cost += litellm.completion_cost(
                    completion_response=_response_body,
                    custom_llm_provider=custom_llm_provider,
                )
                verbose_logger.debug("total_cost=%s", total_cost)
        return total_cost
    except Exception as e:
        verbose_logger.error("error in _get_batch_job_cost_from_file_content", e)
        raise e


def _get_batch_job_total_usage_from_file_content(
    file_content_dictionary: List[dict],
    custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
) -> Usage:
    """
    Get the tokens of a batch job from the file content
    """
    total_tokens: int = 0
    prompt_tokens: int = 0
    completion_tokens: int = 0
    for _item in file_content_dictionary:
        if _batch_response_was_successful(_item):
            _response_body = _get_response_from_batch_job_output_file(_item)
            usage: Usage = _get_batch_job_usage_from_response_body(_response_body)
            total_tokens += usage.total_tokens
            prompt_tokens += usage.prompt_tokens
            completion_tokens += usage.completion_tokens
    return Usage(
        total_tokens=total_tokens,
        prompt_tokens=prompt_tokens,
        completion_tokens=completion_tokens,
    )


def _get_batch_job_usage_from_response_body(response_body: dict) -> Usage:
    """
    Get the tokens of a batch job from the response body
    """
    _usage_dict = response_body.get("usage", None) or {}
    usage: Usage = Usage(**_usage_dict)
    return usage


def _get_response_from_batch_job_output_file(batch_job_output_file: dict) -> Any:
    """
    Get the response from the batch job output file
    """
    _response: dict = batch_job_output_file.get("response", None) or {}
    _response_body = _response.get("body", None) or {}
    return _response_body


def _batch_response_was_successful(batch_job_output_file: dict) -> bool:
    """
    Check if the batch job response status == 200
    """
    _response: dict = batch_job_output_file.get("response", None) or {}
    return _response.get("status_code", None) == 200


def _create_standard_logging_object_for_completed_batch(
    kwargs: dict,
    start_time: datetime.datetime,
    end_time: datetime.datetime,
    logging_obj: LiteLLMLoggingObj,
    batch_usage_object: Usage,
    response_cost: float,
) -> StandardLoggingPayload:
    """
    Create a standard logging object for a completed batch
    """
    standard_logging_object = logging_obj.model_call_details.get(
        "standard_logging_object", None
    )

    if standard_logging_object is None:
        raise ValueError("unable to create standard logging object for completed batch")

    # Add Completed Batch Job Usage and Response Cost
    standard_logging_object["call_type"] = "batch_success"
    standard_logging_object["response_cost"] = response_cost
    standard_logging_object["total_tokens"] = batch_usage_object.total_tokens
    standard_logging_object["prompt_tokens"] = batch_usage_object.prompt_tokens
    standard_logging_object["completion_tokens"] = batch_usage_object.completion_tokens
    return standard_logging_object