|
import gradio as gr |
|
from typing import Dict |
|
import pandas as pd |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class GradioInterface: |
|
def __init__(self): |
|
|
|
self.candidate_feedback = pd.DataFrame(columns=["Name", "Score", "Feedback"]) |
|
|
|
def validate_file_format(self, file_path: str, valid_extensions: list) -> bool: |
|
return isinstance(file_path, str) and any( |
|
file_path.endswith(ext) for ext in valid_extensions |
|
) |
|
|
|
def process_video(self, video_path: str) -> str: |
|
|
|
return "### Transcript\nExample of transcript of the interview video." |
|
|
|
def process_resume(self, resume_path: str) -> str: |
|
|
|
return "### Resume Analysis\n- **Skills**: NLP, Machine Learning, Computer Vision\n- **Experience**: 5 years." |
|
|
|
def analyze_emotions(self, video_path: str) -> str: |
|
|
|
return "### Emotion Analysis\n- **Overall Emotion**: Positive\n- **Details**: Candidate displayed confidence and engagement." |
|
|
|
def get_feedback(self, name: str, score: int, feedback: str) -> pd.DataFrame: |
|
return pd.DataFrame({"Name": [name], "Score": [score], "Feedback": [feedback]}) |
|
|
|
def save_report(self): |
|
|
|
report_path = "report_path.docx" |
|
with open(report_path, "w") as f: |
|
|
|
f.write("Example report") |
|
return report_path |
|
|
|
def create_interface(self) -> gr.Blocks: |
|
def process_submission( |
|
video_path, resume_path, interview_questions, job_requirements |
|
): |
|
|
|
if not video_path: |
|
return ( |
|
"Please upload an interview video.", |
|
None, |
|
None, |
|
self.candidate_feedback, |
|
) |
|
if not resume_path: |
|
return ( |
|
"Please upload a resume (PDF).", |
|
None, |
|
None, |
|
self.candidate_feedback, |
|
) |
|
if not interview_questions: |
|
return ( |
|
"Please provide interview questions.", |
|
None, |
|
None, |
|
self.candidate_feedback, |
|
) |
|
if not job_requirements: |
|
return ( |
|
"Please provide job requirements.", |
|
None, |
|
None, |
|
self.candidate_feedback, |
|
) |
|
if not self.validate_file_format(video_path, [".mp4", ".avi", ".mkv"]): |
|
return "Invalid video format.", None, None, self.candidate_feedback |
|
if not self.validate_file_format(resume_path, [".pdf"]): |
|
return ( |
|
"Please submit resume in PDF format.", |
|
None, |
|
None, |
|
self.candidate_feedback, |
|
) |
|
|
|
|
|
video_transcript = self.process_video(video_path) |
|
emotion_analysis = self.analyze_emotions(video_path) |
|
resume_analysis = self.process_resume(resume_path) |
|
|
|
feedback_list = self.get_feedback( |
|
name="Johnson", |
|
score=88, |
|
feedback="Outstanding technical and soft skills.", |
|
) |
|
|
|
self.candidate_feedback = pd.concat( |
|
[self.candidate_feedback, feedback_list], ignore_index=True |
|
) |
|
|
|
|
|
return ( |
|
video_transcript, |
|
emotion_analysis, |
|
resume_analysis, |
|
self.candidate_feedback, |
|
) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## HR Interview Analysis System") |
|
|
|
|
|
with gr.Row(): |
|
video_input = gr.Video(label="Upload Interview Video") |
|
resume_input = gr.File(label="Upload Resume (PDF)") |
|
with gr.Row(): |
|
question_input = gr.Textbox( |
|
label="Interview Questions", |
|
lines=5, |
|
placeholder="Enter the interview question here", |
|
) |
|
requirements_input = gr.Textbox( |
|
label="Job Requirements", |
|
lines=5, |
|
placeholder="Enter the job requirements here", |
|
) |
|
|
|
submit_button = gr.Button("Submit") |
|
|
|
with gr.Tabs(): |
|
with gr.Tab("Result"): |
|
transcript_output = gr.Markdown(label="Video Transcript") |
|
emotion_output = gr.Markdown(label="Emotion Analysis") |
|
resume_output = gr.Markdown(label="Resume Analysis") |
|
|
|
with gr.Tab("List of Candidates"): |
|
feedback_output = gr.Dataframe( |
|
label="Candidate Feedback Lists", interactive=False |
|
) |
|
|
|
save_button = gr.Button("Save Report") |
|
save_button.click( |
|
fn=self.save_report, |
|
inputs=[], |
|
outputs=gr.File(label="Download Report"), |
|
) |
|
|
|
submit_button.click( |
|
fn=process_submission, |
|
inputs=[video_input, resume_input, question_input, requirements_input], |
|
outputs=[ |
|
transcript_output, |
|
emotion_output, |
|
resume_output, |
|
feedback_output, |
|
], |
|
) |
|
|
|
return demo |
|
|
|
|
|
def launch_app(): |
|
print(gr.__version__) |
|
app = GradioInterface() |
|
interface = app.create_interface() |
|
interface.launch() |
|
|
|
|
|
if __name__ == "__main__": |
|
launch_app() |
|
|