File size: 7,674 Bytes
c53a8c6
 
d97dc74
c53a8c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d97dc74
 
 
 
 
 
 
c53a8c6
 
d97dc74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c53a8c6
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import gradio as gr
from typing import Dict
import pandas as pd

# from src.application.services import InterviewAnalyzer
# from src.infrastructure.llm import LangchainService
# from src.infrastructure.emotion import DeepFaceService
# from src.infrastructure.speech import GoogleSpeechService


# class GradioInterface:
#     def __init__(self):
#         # Initialize services
#         self.emotion_service = DeepFaceService()
#         self.speech_service = GoogleSpeechService()
#         self.llm_service = LangchainService()
#
#         # Initialize analyzer
#         self.analyzer = InterviewAnalyzer(
#             emotion_service=self.emotion_service,
#             speech_service=self.speech_service,
#             llm_service=self.llm_service,
#         )
#
#     def create_interface(self) -> gr.Interface:
#         def process_submission(
#             video_file: str, resume_file: str, job_requirements: str
#         ) -> Dict:
#             # Implementation for processing submission
#             pass
#
#         # Create Gradio interface
#         interface = gr.Interface(
#             fn=process_submission,
#             inputs=[
#                 gr.Video(label="Interview Recording"),
#                 gr.File(label="Resume"),
#                 gr.Textbox(label="Job Requirements", lines=5),
#             ],
#             outputs=gr.JSON(label="Analysis Results"),
#             title="HR Interview Analysis System",
#             description="Upload interview recording and resume to analyze candidate performance",
#         )
#
#         return interface


# Testing to setup the simple interface
class GradioInterface:
    def __init__(self):
        # DataFrame to List All Users' Feedbacks
        self.candidate_feedback = pd.DataFrame(columns=["Name", "Score", "Feedback"])

    def validate_file_format(self, file_path: str, valid_extensions: list) -> bool:
        return isinstance(file_path, str) and any(
            file_path.endswith(ext) for ext in valid_extensions
        )

    def process_video(self, video_path: str) -> str:
        # Process transcript from the video
        return "### Transcript\nExample of transcript of the interview video."

    def process_resume(self, resume_path: str) -> str:
        # Resume Parsing
        return "### Resume Analysis\n- **Skills**: NLP, Machine Learning, Computer Vision\n- **Experience**: 5 years."

    def analyze_emotions(self, video_path: str) -> str:
        # Emotion Analysis
        return "### Emotion Analysis\n- **Overall Emotion**: Positive\n- **Details**: Candidate displayed confidence and engagement."

    def get_feedback(self, name: str, score: int, feedback: str) -> pd.DataFrame:
        return pd.DataFrame({"Name": [name], "Score": [score], "Feedback": [feedback]})

    def save_report(self):
        # Save report
        report_path = "report_path.docx"
        with open(report_path, "w") as f:
            # Pass fields to include in report here
            f.write("Example report")
        return report_path

    def create_interface(self) -> gr.Blocks:
        def process_submission(
            video_path, resume_path, interview_questions, job_requirements
        ):
            # Validate inputs and formats
            if not video_path:
                return (
                    "Please upload an interview video.",
                    None,
                    None,
                    self.candidate_feedback,
                )
            if not resume_path:
                return (
                    "Please upload a resume (PDF).",
                    None,
                    None,
                    self.candidate_feedback,
                )
            if not interview_questions:
                return (
                    "Please provide interview questions.",
                    None,
                    None,
                    self.candidate_feedback,
                )
            if not job_requirements:
                return (
                    "Please provide job requirements.",
                    None,
                    None,
                    self.candidate_feedback,
                )
            if not self.validate_file_format(video_path, [".mp4", ".avi", ".mkv"]):
                return "Invalid video format.", None, None, self.candidate_feedback
            if not self.validate_file_format(resume_path, [".pdf"]):
                return (
                    "Please submit resume in PDF format.",
                    None,
                    None,
                    self.candidate_feedback,
                )

            # Mock outputs for this submission
            video_transcript = self.process_video(video_path)
            emotion_analysis = self.analyze_emotions(video_path)
            resume_analysis = self.process_resume(resume_path)
            # Example of Feedback
            feedback_list = self.get_feedback(
                name="Johnson",
                score=88,
                feedback="Outstanding technical and soft skills.",
            )
            # Append the new candidate feedback to the DataFrame
            self.candidate_feedback = pd.concat(
                [self.candidate_feedback, feedback_list], ignore_index=True
            )

            # Return both the individual result and the list result
            return (
                video_transcript,
                emotion_analysis,
                resume_analysis,
                self.candidate_feedback,
            )

        # Build the interface using Blocks
        with gr.Blocks() as demo:
            gr.Markdown("## HR Interview Analysis System")

            # Inputs section
            with gr.Row():
                video_input = gr.Video(label="Upload Interview Video")
                resume_input = gr.File(label="Upload Resume (PDF)")
            with gr.Row():
                question_input = gr.Textbox(
                    label="Interview Questions",
                    lines=5,
                    placeholder="Enter the interview question here",
                )
                requirements_input = gr.Textbox(
                    label="Job Requirements",
                    lines=5,
                    placeholder="Enter the job requirements here",
                )

            submit_button = gr.Button("Submit")

            with gr.Tabs():
                with gr.Tab("Result"):
                    transcript_output = gr.Markdown(label="Video Transcript")
                    emotion_output = gr.Markdown(label="Emotion Analysis")
                    resume_output = gr.Markdown(label="Resume Analysis")

                with gr.Tab("List of Candidates"):
                    feedback_output = gr.Dataframe(
                        label="Candidate Feedback Lists", interactive=False
                    )

            save_button = gr.Button("Save Report")
            save_button.click(
                fn=self.save_report,
                inputs=[],
                outputs=gr.File(label="Download Report"),
            )
            # Connect the button to the function
            submit_button.click(
                fn=process_submission,
                inputs=[video_input, resume_input, question_input, requirements_input],
                outputs=[
                    transcript_output,
                    emotion_output,
                    resume_output,
                    feedback_output,
                ],
            )

        return demo


def launch_app():
    print(gr.__version__)
    app = GradioInterface()
    interface = app.create_interface()
    interface.launch()


if __name__ == "__main__":
    launch_app()