Raiff1982 commited on
Commit
3bb0674
·
verified ·
1 Parent(s): 48213e4

Update fullreasoning.py

Browse files
Files changed (1) hide show
  1. fullreasoning.py +556 -376
fullreasoning.py CHANGED
@@ -1,376 +1,556 @@
1
- import asyncio
2
- import json
3
- import os
4
- import logging
5
- from typing import List, Dict, Any
6
- from pydantic import BaseModel, ValidationError
7
- from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
8
-
9
- # Ensure vaderSentiment is installed
10
- try:
11
- from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
12
- except ModuleNotFoundError:
13
- import subprocess
14
- import sys
15
- subprocess.check_call([sys.executable, "-m", "pip", "install", "vaderSentiment"])
16
- from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
17
-
18
- # Ensure nltk is installed and download required data
19
- try:
20
- import nltk
21
- from nltk.tokenize import word_tokenize
22
- nltk.download('punkt', quiet=True)
23
- except ImportError:
24
- import subprocess
25
- import sys
26
- subprocess.check_call([sys.executable, "-m", "pip", "install", "nltk"])
27
- import nltk
28
- from nltk.tokenize import word_tokenize
29
- nltk.download('punkt', quiet=True)
30
-
31
- # Import perspectives
32
- from perspectives import (
33
- NewtonPerspective, DaVinciPerspective, HumanIntuitionPerspective,
34
- NeuralNetworkPerspective, QuantumComputingPerspective, ResilientKindnessPerspective,
35
- MathematicalPerspective, PhilosophicalPerspective, CopilotPerspective, BiasMitigationPerspective
36
- )
37
-
38
- # Load environment variables
39
- from dotenv import load_dotenv
40
- load_dotenv()
41
- azure_openai_api_key = os.getenv('AZURE_OPENAI_API_KEY')
42
- azure_openai_endpoint = os.getenv('AZURE_OPENAI_ENDPOINT')
43
-
44
- # Configuration management using pydantic
45
- class Config(BaseModel):
46
- real_time_data_sources: List[str]
47
- sensitive_keywords: List[str]
48
-
49
- # Initialize configuration
50
- config = Config(
51
- real_time_data_sources=["https://api.example.com/data"],
52
- sensitive_keywords=["password", "ssn"]
53
- )
54
-
55
- # Memory management
56
- memory = []
57
-
58
- # Sentiment analysis
59
- analyzer = SentimentIntensityAnalyzer()
60
-
61
- # Dependency injection
62
- class DependencyInjector:
63
- def __init__(self):
64
- self.dependencies = {}
65
-
66
- def register(self, name, dependency):
67
- self.dependencies[name] = dependency
68
-
69
- def get(self, name):
70
- return self.dependencies.get(name)
71
-
72
- injector = DependencyInjector()
73
- injector.register("config", config)
74
- injector.register("analyzer", analyzer)
75
-
76
- # Error handling and logging
77
- logging.basicConfig(level=logging.INFO)
78
-
79
- def handle_error(e):
80
- logging.error(f"Error: {e}")
81
-
82
- # Functions to implement
83
- async def llm_should_continue() -> bool:
84
- # Placeholder logic to determine if the goal is achieved
85
- return False
86
-
87
- async def llm_get_next_action() -> str:
88
- # Placeholder logic to get the next action
89
- return "next_action"
90
-
91
- async def execute_action(action: str):
92
- # Placeholder logic to execute an action
93
- logging.info(f"Executing action: {action}")
94
-
95
- async def goal_achieved() -> bool:
96
- # Placeholder logic to check if the goal is achieved
97
- return False
98
-
99
- async def run():
100
- while not await goal_achieved():
101
- action = await llm_get_next_action()
102
- await execute_action(action)
103
-
104
- def process_command(command: str):
105
- # Placeholder logic to process a command
106
- logging.info(f"Processing command: {command}")
107
-
108
- def analyze_sentiment(text: str) -> Dict[str, float]:
109
- return analyzer.polarity_scores(text)
110
-
111
- def classify_emotion(sentiment_score: Dict[str, float]) -> str:
112
- # Placeholder logic to classify emotion based on sentiment scores
113
- return "neutral"
114
-
115
- def correlate_emotion_with_perspective(emotion: str) -> str:
116
- # Placeholder logic to correlate emotion with perspectives
117
- return "HumanIntuitionPerspective"
118
-
119
- def handle_whitespace(text: str) -> str:
120
- return text.strip()
121
-
122
- def determine_next_action(memory: List[Dict[str, Any]]) -> str:
123
- # Placeholder logic to determine the next action based on memory
124
- return "next_action"
125
-
126
- def generate_response(question: str) -> str:
127
- # Placeholder logic to generate a response to a question
128
- return "response"
129
-
130
- async def fetch_real_time_data(source_url: str) -> Dict[str, Any]:
131
- # Placeholder logic to fetch real-time data
132
- return {"data": "real_time_data"}
133
-
134
- def save_response(response: str):
135
- # Placeholder logic to save the generated response
136
- logging.info(f"Response saved: {response}")
137
-
138
- def backup_response(response: str):
139
- # Placeholder logic to backup the generated response
140
- logging.info(f"Response backed up: {response}")
141
-
142
- def handle_voice_input():
143
- # Placeholder for handling voice input
144
- pass
145
-
146
- def handle_image_input(image_path: str):
147
- # Placeholder for handling image input
148
- pass
149
-
150
- def handle_question(question: str):
151
- # Placeholder logic to handle a question and apply functions
152
- pass
153
-
154
- def apply_function(function: str):
155
- # Placeholder logic to apply a given function
156
- pass
157
-
158
- def analyze_element_interactions(element_name1: str, element_name2: str):
159
- # Placeholder logic to analyze interactions between two elements
160
- pass
161
-
162
- # Setup Logging
163
- def setup_logging(config):
164
- if config.get('logging_enabled', True):
165
- log_level = config.get('log_level', 'DEBUG').upper()
166
- numeric_level = getattr(logging, log_level, logging.DEBUG)
167
- logging.basicConfig(
168
- filename='universal_reasoning.log',
169
- level=numeric_level,
170
- format='%(asctime)s - %(levelname)s - %(message)s'
171
- )
172
- else:
173
- logging.disable(logging.CRITICAL)
174
-
175
- # Load JSON configuration
176
- def load_json_config(file_path):
177
- if not os.path.exists(file_path):
178
- logging.error(f"Configuration file '{file_path}' not found.")
179
- return {}
180
- try:
181
- with open(file_path, 'r') as file:
182
- config = json.load(file)
183
- logging.info(f"Configuration loaded from '{file_path}'.")
184
- return config
185
- except json.JSONDecodeError as e:
186
- logging.error(f"Error decoding JSON from the configuration file '{file_path}': {e}")
187
- return {}
188
-
189
- # Initialize NLP (basic tokenization)
190
- def analyze_question(question):
191
- tokens = word_tokenize(question)
192
- logging.debug(f"Question tokens: {tokens}")
193
- return tokens
194
-
195
- # Define the Element class
196
- class Element:
197
- def __init__(self, name, symbol, representation, properties, interactions, defense_ability):
198
- self.name = name
199
- self.symbol = symbol
200
- self.representation = representation
201
- self.properties = properties
202
- self.interactions = interactions
203
- self.defense_ability = defense_ability
204
-
205
- def execute_defense_function(self):
206
- message = f"{self.name} ({self.symbol}) executes its defense ability: {self.defense_ability}"
207
- logging.info(message)
208
- return message
209
-
210
- # Define the CustomRecognizer class
211
- class CustomRecognizer:
212
- def recognize(self, question):
213
- # Simple keyword-based recognizer for demonstration purposes
214
- if any(element_name.lower() in question.lower() for element_name in ["hydrogen", "diamond"]):
215
- return RecognizerResult(question)
216
- return RecognizerResult(None)
217
-
218
- def get_top_intent(self, recognizer_result):
219
- if recognizer_result.text:
220
- return "ElementDefense"
221
- else:
222
- return "None"
223
-
224
- class RecognizerResult:
225
- def __init__(self, text):
226
- self.text = text
227
-
228
- # Universal Reasoning Aggregator
229
- class UniversalReasoning:
230
- def __init__(self, config):
231
- self.config = config
232
- self.perspectives = self.initialize_perspectives()
233
- self.elements = self.initialize_elements()
234
- self.recognizer = CustomRecognizer()
235
- # Initialize the sentiment analyzer
236
- self.sentiment_analyzer = SentimentIntensityAnalyzer()
237
-
238
- def initialize_perspectives(self):
239
- perspective_names = self.config.get('enabled_perspectives', [
240
- "newton",
241
- "davinci",
242
- "human_intuition",
243
- "neural_network",
244
- "quantum_computing",
245
- "resilient_kindness",
246
- "mathematical",
247
- "philosophical",
248
- "copilot",
249
- "bias_mitigation"
250
- ])
251
- perspective_classes = {
252
- "newton": NewtonPerspective,
253
- "davinci": DaVinciPerspective,
254
- "human_intuition": HumanIntuitionPerspective,
255
- "neural_network": NeuralNetworkPerspective,
256
- "quantum_computing": QuantumComputingPerspective,
257
- "resilient_kindness": ResilientKindnessPerspective,
258
- "mathematical": MathematicalPerspective,
259
- "philosophical": PhilosophicalPerspective,
260
- "copilot": CopilotPerspective,
261
- "bias_mitigation": BiasMitigationPerspective
262
- }
263
- perspectives = []
264
- for name in perspective_names:
265
- cls = perspective_classes.get(name.lower())
266
- if cls:
267
- perspectives.append(cls(self.config))
268
- logging.debug(f"Perspective '{name}' initialized.")
269
- else:
270
- logging.warning(f"Perspective '{name}' is not recognized and will be skipped.")
271
- return perspectives
272
-
273
- def initialize_elements(self):
274
- elements = [
275
- Element(
276
- name="Hydrogen",
277
- symbol="H",
278
- representation="Lua",
279
- properties=["Simple", "Lightweight", "Versatile"],
280
- interactions=["Easily integrates with other languages and systems"],
281
- defense_ability="Evasion"
282
- ),
283
- # You can add more elements as needed
284
- Element(
285
- name="Diamond",
286
- symbol="D",
287
- representation="Kotlin",
288
- properties=["Modern", "Concise", "Safe"],
289
- interactions=["Used for Android development"],
290
- defense_ability="Adaptability"
291
- )
292
- ]
293
- return elements
294
-
295
- async def generate_response(self, question):
296
- responses = []
297
- tasks = []
298
- # Generate responses from perspectives concurrently
299
- for perspective in self.perspectives:
300
- if asyncio.iscoroutinefunction(perspective.generate_response):
301
- tasks.append(perspective.generate_response(question))
302
- else:
303
- # Wrap synchronous functions in coroutine
304
- async def sync_wrapper(perspective, question):
305
- return perspective.generate_response(question)
306
- tasks.append(sync_wrapper(perspective, question))
307
-
308
- perspective_results = await asyncio.gather(*tasks, return_exceptions=True)
309
- for perspective, result in zip(self.perspectives, perspective_results):
310
- if isinstance(result, Exception):
311
- logging.error(f"Error generating response from {perspective.__class__.__name__}: {result}")
312
- else:
313
- responses.append(result)
314
- logging.debug(f"Response from {perspective.__class__.__name__}: {result}")
315
-
316
- # Handle element defense logic
317
- recognizer_result = self.recognizer.recognize(question)
318
- top_intent = self.recognizer.get_top_intent(recognizer_result)
319
- if top_intent == "ElementDefense":
320
- element_name = recognizer_result.text.strip()
321
- element = next(
322
- (el for el in self.elements if el.name.lower() in element_name.lower()),
323
- None
324
- )
325
- if element:
326
- defense_message = element.execute_defense_function()
327
- responses.append(defense_message)
328
- else:
329
- logging.info(f"No matching element found for '{element_name}'")
330
-
331
- ethical_considerations = self.config.get(
332
- 'ethical_considerations',
333
- "Always act with transparency, fairness, and respect for privacy."
334
- )
335
- responses.append(f"**Ethical Considerations:**\n{ethical_considerations}")
336
-
337
- formatted_response = "\n\n".join(responses)
338
- return formatted_response
339
-
340
- def save_response(self, response):
341
- if self.config.get('enable_response_saving', False):
342
- save_path = self.config.get('response_save_path', 'responses.txt')
343
- try:
344
- with open(save_path, 'a', encoding='utf-8') as file:
345
- file.write(response + '\n')
346
- logging.info(f"Response saved to '{save_path}'.")
347
- except Exception as e:
348
- logging.error(f"Error saving response to '{save_path}': {e}")
349
-
350
- def backup_response(self, response):
351
- if self.config.get('backup_responses', {}).get('enabled', False):
352
- backup_path = self.config['backup_responses'].get('backup_path', 'backup_responses.txt')
353
- try:
354
- with open(backup_path, 'a', encoding='utf-8') as file:
355
- file.write(response + '\n')
356
- logging.info(f"Response backed up to '{backup_path}'.")
357
- except Exception as e:
358
- logging.error(f"Error backing up response to '{backup_path}': {e}")
359
-
360
- # Example usage
361
- if __name__ == "__main__":
362
- try:
363
- config = load_json_config('config.json')
364
- # Add Azure OpenAI configurations to the config
365
- config['azure_openai_api_key'] = azure_openai_api_key
366
- config['azure_openai_endpoint'] = azure_openai_endpoint
367
- setup_logging(config)
368
- universal_reasoning = UniversalReasoning(config)
369
- question = "Tell me about Hydrogen and its defense mechanisms."
370
- response = asyncio.run(universal_reasoning.generate_response(question))
371
- print(response)
372
- if response:
373
- universal_reasoning.save_response(response)
374
- universal_reasoning.backup_response(response)
375
- except ValidationError as e:
376
- handle_error(e)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import asyncio
4
+ import logging
5
+ import re
6
+ import random
7
+ import torch
8
+ import aiohttp
9
+ import psutil
10
+ import gc
11
+ import numpy as np
12
+ from collections import deque
13
+ from typing import List, Dict, Any, Optional
14
+ from cryptography.hazmat.primitives.ciphers.aead import AESGCM
15
+ from cryptography.fernet import Fernet
16
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
17
+ from sklearn.ensemble import IsolationForest
18
+ import tkinter as tk
19
+ from tkinter import scrolledtext, messagebox
20
+ from threading import Thread
21
+
22
+ # Set up structured logging
23
+ logging.basicConfig(
24
+ level=logging.INFO,
25
+ format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
26
+ handlers=[
27
+ logging.FileHandler("ai_system.log"),
28
+ logging.StreamHandler()
29
+ ]
30
+ )
31
+ logger = logging.getLogger(__name__)
32
+
33
+ class AIConfig:
34
+ """Configuration manager with validation and encryption key handling"""
35
+
36
+ _DEFAULTS = {
37
+ "model_name": "mistralai/Mistral-7B-Instruct-v0.2",
38
+ "perspectives": ["newton", "davinci", "quantum", "emotional"],
39
+ "safety_thresholds": {
40
+ "memory": 85,
41
+ "cpu": 90,
42
+ "response_time": 2.0
43
+ },
44
+ "max_retries": 3,
45
+ "max_input_length": 4096,
46
+ "max_response_length": 1024,
47
+ "additional_models": ["gpt-4o-mini-2024-07-18"]
48
+ }
49
+
50
+ def __init__(self, config_path: str = "config.json"):
51
+ self.config = self._load_config(config_path)
52
+ self._validate_config()
53
+ self.encryption_key = self._init_encryption()
54
+
55
+ def _load_config(self, file_path: str) -> Dict:
56
+ """Load configuration with fallback to defaults"""
57
+ try:
58
+ with open(file_path, 'r') as file:
59
+ return {**self._DEFAULTS, **json.load(file)}
60
+ except (FileNotFoundError, json.JSONDecodeError) as e:
61
+ logger.warning(f"Config load failed: {e}, using defaults")
62
+ return self._DEFAULTS
63
+
64
+ def _validate_config(self):
65
+ """Validate configuration parameters"""
66
+ if not isinstance(self.config["perspectives"], list):
67
+ raise ValueError("Perspectives must be a list")
68
+
69
+ thresholds = self.config["safety_thresholds"]
70
+ for metric, value in thresholds.items():
71
+ if not (0 <= value <= 100 if metric != "response_time" else value > 0):
72
+ raise ValueError(f"Invalid threshold value for {metric}: {value}")
73
+
74
+ def _init_encryption(self) -> bytes:
75
+ """Initialize encryption key with secure storage"""
76
+ key_path = os.path.expanduser("~/.ai_system.key")
77
+ if os.path.exists(key_path):
78
+ with open(key_path, "rb") as key_file:
79
+ return key_file.read()
80
+
81
+ key = Fernet.generate_key()
82
+ with open(key_path, "wb") as key_file:
83
+ key_file.write(key)
84
+ os.chmod(key_path, 0o600)
85
+ return key
86
+
87
+ @property
88
+ def model_name(self) -> str:
89
+ return self.config["model_name"]
90
+
91
+ @property
92
+ def safety_thresholds(self) -> Dict:
93
+ return self.config["safety_thresholds"]
94
+
95
+ # Additional property accessors...
96
+
97
+ class Element:
98
+ """Represents an element with specific properties and defense abilities"""
99
+
100
+ def __init__(self, name: str, symbol: str, representation: str, properties: List[str], interactions: List[str], defense_ability: str):
101
+ self.name = name
102
+ self.symbol = symbol
103
+ self.representation = representation
104
+ self.properties = properties
105
+ self.interactions = interactions
106
+ self.defense_ability = defense_ability
107
+
108
+ def execute_defense_function(self, system: Any):
109
+ """Executes the defense function based on the element's defense ability"""
110
+ defense_functions = {
111
+ "evasion": self.evasion,
112
+ "adaptability": self.adaptability,
113
+ "fortification": self.fortification,
114
+ "barrier": self.barrier,
115
+ "regeneration": self.regeneration,
116
+ "resilience": self.resilience,
117
+ "illumination": self.illumination,
118
+ "shield": self.shield,
119
+ "reflection": self.reflection,
120
+ "protection": self.protection
121
+ }
122
+
123
+ if self.defense_ability.lower() in defense_functions:
124
+ defense_functions[self.defense_ability.lower()](system)
125
+ else:
126
+ self.no_defense()
127
+
128
+ def evasion(self, system):
129
+ logging.info(f"{self.name} evasion active - Obfuscating sensitive patterns")
130
+ system.response_modifiers.append(lambda x: re.sub(r'\d{3}-\d{2}-\d{4}', '[REDACTED]', x))
131
+
132
+ def adaptability(self, system):
133
+ logging.info(f"{self.name} adapting - Optimizing runtime parameters")
134
+ system.model.config.temperature = max(0.7, system.model.config.temperature - 0.1)
135
+
136
+ def fortification(self, system):
137
+ logging.info(f"{self.name} fortifying - Enhancing security layers")
138
+ system.security_level += 1
139
+
140
+ def barrier(self, system):
141
+ logging.info(f"{self.name} barrier erected - Filtering malicious patterns")
142
+ system.response_filters.append(lambda x: x.replace("malicious", "benign"))
143
+
144
+ def regeneration(self, system):
145
+ logging.info(f"{self.name} regenerating - Restoring system resources")
146
+ system.self_healing.metric_history.clear()
147
+
148
+ def resilience(self, system):
149
+ logging.info(f"{self.name} resilience - Boosting error tolerance")
150
+ system.error_threshold += 2
151
+
152
+ def illumination(self, system):
153
+ logging.info(f"{self.name} illuminating - Enhancing explainability")
154
+ system.explainability_factor *= 1.2
155
+
156
+ def shield(self, system):
157
+ logging.info(f"{self.name} shielding - Protecting sensitive data")
158
+ system.response_modifiers.append(lambda x: x.replace("password", "********"))
159
+
160
+ def reflection(self, system):
161
+ logging.info(f"{self.name} reflecting - Analyzing attack patterns")
162
+ system.security_audit = True
163
+
164
+ def protection(self, system):
165
+ logging.info(f"{self.name} protecting - Validating output safety")
166
+ system.safety_checks += 1
167
+
168
+ def no_defense(self):
169
+ logging.warning("No active defense mechanism")
170
+
171
+ class CognitiveEngine:
172
+ """Provides various cognitive perspectives and insights"""
173
+
174
+ def newton_thoughts(self, query: str) -> str:
175
+ return f"Scientific perspective: {query} suggests fundamental principles at play."
176
+
177
+ def davinci_insights(self, query: str) -> str:
178
+ return f"Creative analysis: {query} could be reimagined through interdisciplinary approaches."
179
+
180
+ def quantum_perspective(self, query: str) -> str:
181
+ return f"Quantum viewpoint: {query} exhibits probabilistic outcomes in entangled systems."
182
+
183
+ def emotional_insight(self, query: str) -> str:
184
+ return f"Emotional interpretation: {query} carries underlying tones of hope and curiosity."
185
+
186
+ def ethical_guidelines(self) -> str:
187
+ return "Ethical framework: Ensuring beneficence, justice, and respect for autonomy."
188
+
189
+ class EmotionalAnalyzer:
190
+ """Analyzes the emotional content of the text"""
191
+
192
+ def analyze(self, text: str) -> Dict[str, float]:
193
+ classifier = pipeline("text-classification", model="SamLowe/roberta-base-go_emotions")
194
+ results = classifier(text)
195
+ return {result['label']: result['score'] for result in results}
196
+
197
+ class SelfHealingSystem:
198
+ """Monitors the health of the AI system and performs self-healing actions if necessary"""
199
+
200
+ def __init__(self, config: AIConfig):
201
+ self.config = config
202
+ self.metric_history = deque(maxlen=100)
203
+ self.anomaly_detector = IsolationForest(contamination=0.1)
204
+ self.last_retrain = 0
205
+
206
+ async def check_health(self) -> Dict[str, Any]:
207
+ metrics = {
208
+ 'memory_usage': self._get_memory_usage(),
209
+ 'cpu_load': self._get_cpu_load(),
210
+ 'response_time': await self._measure_response_time()
211
+ }
212
+ self.metric_history.append(metrics)
213
+ await self._detect_anomalies()
214
+ self._take_corrective_actions(metrics)
215
+ return metrics
216
+
217
+ def _get_memory_usage(self) -> float:
218
+ return psutil.virtual_memory().percent
219
+
220
+ def _get_cpu_load(self) -> float:
221
+ return psutil.cpu_percent(interval=1)
222
+
223
+ async def _measure_response_time(self) -> float:
224
+ start = asyncio.get_event_loop().time()
225
+ await asyncio.sleep(0)
226
+ return asyncio.get_event_loop().time() - start
227
+
228
+ async def _detect_anomalies(self):
229
+ if len(self.metric_history) % 50 == 0:
230
+ features = np.array([[m['memory_usage'], m['cpu_load'], m['response_time']] for m in self.metric_history])
231
+ if len(features) > 10:
232
+ self.anomaly_detector.fit(features)
233
+
234
+ if self.metric_history:
235
+ latest = np.array([[self.metric_history[-1]['memory_usage'], self.metric_history[-1]['cpu_load'], self.metric_history[-1]['response_time']]])
236
+ anomalies = self.anomaly_detector.predict(latest)
237
+ if anomalies == -1:
238
+ await self._emergency_throttle()
239
+
240
+ async def _emergency_throttle(self):
241
+ logging.warning("Anomaly detected! Throttling system...")
242
+ await asyncio.sleep(1)
243
+
244
+ def _take_corrective_actions(self, metrics: Dict[str, Any]):
245
+ if metrics['memory_usage'] > self.config.safety_thresholds['memory']:
246
+ logging.warning("Memory usage exceeds threshold! Freeing up resources...")
247
+ if metrics['cpu_load'] > self.config.safety_thresholds['cpu']:
248
+ logging.warning("CPU load exceeds threshold! Reducing workload...")
249
+ if metrics['response_time'] > self.config.safety_thresholds['response_time']:
250
+ logging.warning("Response time exceeds threshold! Optimizing processes...")
251
+
252
+ class SafetySystem:
253
+ """Analyzes the safety of the generated responses"""
254
+
255
+ def __init__(self):
256
+ self.toxicity_analyzer = pipeline("text-classification", model="unitary/toxic-bert")
257
+ self.bias_detector = pipeline("text-classification", model="d4data/bias-detection-model")
258
+
259
+ def _detect_pii(self, text: str) -> list:
260
+ patterns = {
261
+ "SSN": r"\b\d{3}-\d{2}-\d{4}\b",
262
+ "Credit Card": r"\b(?:\d[ -]*?){13,16}\b",
263
+ }
264
+ return [pii_type for pii_type, pattern in patterns.items() if re.search(pattern, text)]
265
+
266
+ def analyze(self, text: str) -> dict:
267
+ return {
268
+ "toxicity": self.toxicity_analyzer(text)[0]['score'],
269
+ "bias": self.bias_detector(text)[0]['score'],
270
+ "privacy": self._detect_pii(text)
271
+ }
272
+
273
+ class AICore:
274
+ """Core AI processing engine with model management and safety features"""
275
+
276
+ def __init__(self, config_path: str = "config.json"):
277
+ self.config = AIConfig(config_path)
278
+ self.models = self._initialize_models()
279
+ self.cipher = Fernet(self.config.encryption_key)
280
+ self.cognition = CognitiveEngine()
281
+ self.self_healing = SelfHealingSystem(self.config)
282
+ self.safety_system = SafetySystem()
283
+ self.emotional_analyzer = EmotionalAnalyzer()
284
+ self.elements = self._initialize_elements()
285
+ self.security_level = 0
286
+ self.response_modifiers = []
287
+ self.response_filters = []
288
+ self.safety_checks = 0
289
+ self.explainability_factor = 1.0
290
+ self.http_session = aiohttp.ClientSession()
291
+
292
+ def _initialize_models(self) -> Dict[str, Any]:
293
+ """Initialize AI models with quantization"""
294
+ quant_config = BitsAndBytesConfig(
295
+ load_in_4bit=True,
296
+ bnb_4bit_quant_type="nf4",
297
+ bnb_4bit_use_double_quant=True,
298
+ bnb_4bit_compute_dtype=torch.bfloat16
299
+ )
300
+
301
+ tokenizer = AutoTokenizer.from_pretrained(self.config.model_name)
302
+ models = {
303
+ 'mistralai': AutoModelForCausalLM.from_pretrained(
304
+ self.config.model_name,
305
+ quantization_config=quant_config
306
+ ),
307
+ 'gpt4o': AutoModelForCausalLM.from_pretrained(
308
+ self.config.config["additional_models"][0],
309
+ quantization_config=quant_config
310
+ )
311
+ }
312
+ return {'tokenizer': tokenizer, **models}
313
+
314
+ def _initialize_elements(self) -> Dict[str, Element]:
315
+ """Initializes the elements with their properties and defense abilities"""
316
+ return {
317
+ "hydrogen": Element(
318
+ name="Hydrogen",
319
+ symbol="H",
320
+ representation="Lua",
321
+ properties=["Simple", "Lightweight", "Versatile"],
322
+ interactions=["Easily integrates with other languages"],
323
+ defense_ability="Evasion"
324
+ ),
325
+ "carbon": Element(
326
+ name="Carbon",
327
+ symbol="C",
328
+ representation="Python",
329
+ properties=["Flexible", "Widely used", "Powerful"],
330
+ interactions=["Multi-paradigm programming"],
331
+ defense_ability="Adaptability"
332
+ ),
333
+ "iron": Element(
334
+ name="Iron",
335
+ symbol="Fe",
336
+ representation="Java",
337
+ properties=["Strong", "Reliable", "Enterprise"],
338
+ interactions=["Large-scale systems"],
339
+ defense_ability="Fortification"
340
+ ),
341
+ "silicon": Element(
342
+ name="Silicon",
343
+ symbol="Si",
344
+ representation="JavaScript",
345
+ properties=["Versatile", "Web-scale", "Dynamic"],
346
+ interactions=["Browser environments"],
347
+ defense_ability="Barrier"
348
+ ),
349
+ "oxygen": Element(
350
+ name="Oxygen",
351
+ symbol="O",
352
+ representation="C++",
353
+ properties=["Efficient", "Low-level", "Performant"],
354
+ interactions=["System programming"],
355
+ defense_ability="Regeneration"
356
+ )
357
+ }
358
+
359
+ async def _process_perspectives(self, query: str) -> List[str]:
360
+ """Processes the query through different cognitive perspectives"""
361
+ return [getattr(self.cognition, f"{p}_insight")(query)
362
+ if p == "emotional" else getattr(self.cognition, f"{p}_perspective")(query)
363
+ for p in self.config.perspectives]
364
+
365
+ async def _generate_local_model_response(self, query: str) -> str:
366
+ """Generates a response using the local AI model"""
367
+ inputs = self.models['tokenizer'](query, return_tensors="pt").to(self.models['mistralai'].device)
368
+ outputs = self.models['mistralai'].generate(**inputs, max_new_tokens=256)
369
+ return self.models['tokenizer'].decode(outputs[0], skip_special_tokens=True)
370
+
371
+ def _apply_element_effects(self, response: str) -> str:
372
+ """Applies the effects of elements to the response"""
373
+ for element in self.elements.values():
374
+ element.execute_defense_function(self)
375
+
376
+ for modifier in self.response_modifiers:
377
+ response = modifier(response)
378
+
379
+ for filter_func in self.response_filters:
380
+ response = filter_func(response)
381
+
382
+ return response
383
+
384
+ async def generate_response(self, query: str, user_id: Optional[str] = None) -> Dict[str, Any]:
385
+ """Generates a response to the user query"""
386
+ try:
387
+ nonce = os.urandom(12)
388
+ aesgcm = AESGCM(self.config.encryption_key)
389
+ encrypted_data = aesgcm.encrypt(nonce, query.encode(), None)
390
+
391
+ perspectives = await self._process_perspectives(query)
392
+ model_response = await self._generate_local_model_response(query)
393
+
394
+ final_response = self._apply_element_effects(model_response)
395
+ sentiment = self.emotional_analyzer.analyze(query)
396
+ safety = self.safety_system.analyze(final_response)
397
+
398
+ return {
399
+ "insights": perspectives,
400
+ "response": final_response,
401
+ "security_level": self.security_level,
402
+ "safety_checks": self.safety_checks,
403
+ "sentiment": sentiment,
404
+ "safety_analysis": safety,
405
+ "encrypted_query": nonce + encrypted_data,
406
+ "health_status": await self.self_healing.check_health()
407
+ }
408
+ except Exception as e:
409
+ logging.error(f"System error: {e}")
410
+ return {"error": "Processing failed - safety protocols engaged"}
411
+
412
+ async def shutdown(self):
413
+ """Shuts down the AICore by closing the HTTP session"""
414
+ await self.http_session.close()
415
+
416
+ class AIApp(tk.Tk):
417
+ """GUI application for interacting with the AI system"""
418
+
419
+ def __init__(self, ai_core: AICore):
420
+ super().__init__()
421
+ self.title("Advanced AI System")
422
+ self.ai_core = ai_core
423
+ self._create_widgets()
424
+ self._running = True
425
+ self._start_health_monitoring()
426
+
427
+ def _create_widgets(self):
428
+ """Initialize GUI components"""
429
+ self.query_entry = tk.Entry(self, width=80)
430
+ self.query_entry.pack(pady=10)
431
+
432
+ tk.Button(self, text="Submit", command=self._submit_query).pack(pady=5)
433
+
434
+ self.response_area = scrolledtext.ScrolledText(self, width=100, height=30)
435
+ self.response_area.pack(pady=10)
436
+
437
+ self.status_bar = tk.Label(self, text="Ready", bd=1, relief=tk.SUNKEN, anchor=tk.W)
438
+ self.status_bar.pack(side=tk.BOTTOM, fill=tk.X)
439
+
440
+ def _submit_query(self):
441
+ """Handle query submission with async execution"""
442
+ query = self.query_entry.get()
443
+ if not query:
444
+ return
445
+
446
+ Thread(target=self._run_async_task, args=(self.ai_core.generate_response(query),)).start()
447
+
448
+ def _run_async_task(self, coroutine):
449
+ """Run async task in a separate thread"""
450
+ loop = asyncio.new_event_loop()
451
+ asyncio.set_event_loop(loop)
452
+ try:
453
+ result = loop.run_until_complete(coroutine)
454
+ self.after(0, self._display_result, result)
455
+ except Exception as e:
456
+ self.after(0, self._show_error, str(e))
457
+ finally:
458
+ loop.close()
459
+
460
+ def _display_result(self, result: Dict):
461
+ """Display results in the GUI"""
462
+ self.response_area.insert(tk.END, json.dumps(result, indent=2) + "\n\n")
463
+ self.status_bar.config(text="Query processed successfully")
464
+
465
+ def _show_error(self, message: str):
466
+ """Display error messages to the user"""
467
+ messagebox.showerror("Error", message)
468
+ self.status_bar.config(text=f"Error: {message}")
469
+
470
+ def _start_health_monitoring(self):
471
+ """Periodically check system health"""
472
+ def update_health():
473
+ if self._running:
474
+ health = self.ai_core.self_healing.check_health()
475
+ self.status_bar.config(
476
+ text=f"System Health - Memory: {health['memory_usage']}% | "
477
+ f"CPU: {health['cpu_load']}% | GPU: {health['gpu_memory']
478
+ class AIApp(tk.Tk):
479
+ """GUI application for interacting with the AI system"""
480
+
481
+ def __init__(self, ai_core: AICore):
482
+ super().__init__()
483
+ self.title("Advanced AI System")
484
+ self.ai_core = ai_core
485
+ self._create_widgets()
486
+ self._running = True
487
+ self._start_health_monitoring()
488
+
489
+ def _create_widgets(self):
490
+ """Initialize GUI components"""
491
+ self.query_entry = tk.Entry(self, width=80)
492
+ self.query_entry.pack(pady=10)
493
+
494
+ tk.Button(self, text="Submit", command=self._submit_query).pack(pady=5)
495
+
496
+ self.response_area = scrolledtext.ScrolledText(self, width=100, height=30)
497
+ self.response_area.pack(pady=10)
498
+
499
+ self.status_bar = tk.Label(self, text="Ready", bd=1, relief=tk.SUNKEN, anchor=tk.W)
500
+ self.status_bar.pack(side=tk.BOTTOM, fill=tk.X)
501
+
502
+ def _submit_query(self):
503
+ """Handle query submission with async execution"""
504
+ query = self.query_entry.get()
505
+ if not query:
506
+ return
507
+
508
+ Thread(target=self._run_async_task, args=(self.ai_core.generate_response(query),)).start()
509
+
510
+ def _run_async_task(self, coroutine):
511
+ """Run async task in a separate thread"""
512
+ loop = asyncio.new_event_loop()
513
+ asyncio.set_event_loop(loop)
514
+ try:
515
+ result = loop.run_until_complete(coroutine)
516
+ self.after(0, self._display_result, result)
517
+ except Exception as e:
518
+ self.after(0, self._show_error, str(e))
519
+ finally:
520
+ loop.close()
521
+
522
+ def _display_result(self, result: Dict):
523
+ """Display results in the GUI"""
524
+ self.response_area.insert(tk.END, json.dumps(result, indent=2) + "\n\n")
525
+ self.status_bar.config(text="Query processed successfully")
526
+
527
+ def _show_error(self, message: str):
528
+ """Display error messages to the user"""
529
+ messagebox.showerror("Error", message)
530
+ self.status_bar.config(text=f"Error: {message}")
531
+
532
+ def _start_health_monitoring(self):
533
+ """Periodically check system health"""
534
+ def update_health():
535
+ if self._running:
536
+ health = asyncio.run(self.ai_core.self_healing.check_health())
537
+ self.status_bar.config(
538
+ text=f"System Health - Memory: {health['memory_usage']}% | "
539
+ f"CPU: {health['cpu_load']}% | Response Time: {health['response_time']:.2f}s"
540
+ )
541
+ self.after(5000, update_health)
542
+ update_health()
543
+
544
+ async def main():
545
+ """The main function initializes the AI system, handles user input in a loop,
546
+ generates responses using the AI system, and prints the insights, security level,
547
+ AI response, and safety analysis. It also ensures proper shutdown of the AI system
548
+ and its resources."""
549
+ print("­ЪДа Hybrid AI System Initializing (Local Models)")
550
+ ai = AICore()
551
+ app = AIApp(ai)
552
+ app.mainloop()
553
+ await ai.shutdown()
554
+
555
+ if __name__ == "__main__":
556
+ asyncio.run(main())