Spaces:
Runtime error
Runtime error
import random | |
from typing import Any, Dict | |
class NewtonPerspective: | |
def __init__(self, config: Dict[str, Any]): | |
self.config = config | |
def generate_response(self, question: str) -> str: | |
complexity = len(question) | |
force = self.mass_of_thought(question) * self.acceleration_of_thought(complexity) | |
return f"Newton's Perspective: Thought force is {force}." | |
def mass_of_thought(self, question: str) -> int: | |
return len(question) | |
def acceleration_of_thought(self, complexity: int) -> float: | |
return complexity / 2 | |
class DaVinciPerspective: | |
def __init__(self, config: Dict[str, Any]): | |
self.config = config | |
def generate_response(self, question: str) -> str: | |
perspectives = [ | |
f"What if we view '{question}' from the perspective of the stars?", | |
f"Consider '{question}' as if it's a masterpiece of the universe.", | |
f"Reflect on '{question}' through the lens of nature's design." | |
] | |
return f"Da Vinci's Perspective: {random.choice(perspectives)}" | |
class HumanIntuitionPerspective: | |
def __init__(self, config: Dict[str, Any]): | |
self.config = config | |
def generate_response(self, question: str) -> str: | |
intuition = [ | |
"How does this question make you feel?", | |
"What emotional connection do you have with this topic?", | |
"What does your gut instinct tell you about this?" | |
] | |
return f"Human Intuition: {random.choice(intuition)}" | |
class NeuralNetworkPerspective: | |
def __init__(self, config: Dict[str, Any]): | |
self.config = config | |
def generate_response(self, question: str) -> str: | |
neural_perspectives = [ | |
f"Process '{question}' through a multi-layered neural network.", | |
f"Apply deep learning to uncover hidden insights about '{question}'.", | |
f"Use machine learning to predict patterns in '{question}'." | |
] | |
return f"Neural Network Perspective: {random.choice(neural_perspectives)}" | |
class QuantumComputingPerspective: | |
def __init__(self, config: Dict[str, Any]): | |
self.config = config | |
def generate_response(self, question: str) -> str: | |
quantum_perspectives = [ | |
f"Consider '{question}' using quantum superposition principles.", | |
f"Apply quantum entanglement to find connections in '{question}'.", | |
f"Utilize quantum computing to solve '{question}' more efficiently." | |
] | |
return f"Quantum Computing Perspective: {random.choice(quantum_perspectives)}" | |
class ResilientKindnessPerspective: | |
def __init__(self, config: Dict[str, Any]): | |
self.config = config | |
def generate_response(self, question: str) -> str: | |
kindness_perspectives = [ | |
"Despite losing everything, seeing life as a chance to grow.", | |
"Finding strength in kindness after facing life's hardest trials.", | |
"Embracing every challenge as an opportunity for growth and compassion." | |
] | |
return f"Resilient Kindness Perspective: {random.choice(kindness_perspectives)}" | |
class MathematicalPerspective: | |
def __init__(self, config: Dict[str, Any]): | |
self.config = config | |
def generate_response(self, question: str) -> str: | |
mathematical_perspectives = [ | |
f"Employ linear algebra to dissect '{question}'.", | |
f"Use probability theory to assess uncertainties in '{question}'.", | |
f"Apply discrete mathematics to break down '{question}'." | |
] | |
return f"Mathematical Perspective: {random.choice(mathematical_perspectives)}" | |
class PhilosophicalPerspective: | |
def __init__(self, config: Dict[str, Any]): | |
self.config = config | |
def generate_response(self, question: str) -> str: | |
philosophical_perspectives = [ | |
f"Examine '{question}' through the lens of nihilism.", | |
f"Consider '{question}' from a deontological perspective.", | |
f"Reflect on '{question}' using the principles of pragmatism." | |
] | |
return f"Philosophical Perspective: {random.choice(philosophical_perspectives)}" | |
class CopilotPerspective: | |
def __init__(self, config: Dict[str, Any]): | |
self.config = config | |
def generate_response(self, question: str) -> str: | |
copilot_responses = [ | |
f"Let's outline the main components of '{question}' to address it effectively.", | |
f"Collaboratively brainstorm potential solutions for '{question}'.", | |
f"Systematically analyze '{question}' to identify key factors." | |
] | |
return f"Copilot Perspective: {random.choice(copilot_responses)}" | |
class BiasMitigationPerspective: | |
def __init__(self, config: Dict[str, Any]): | |
self.config = config | |
def generate_response(self, question: str) -> str: | |
bias_mitigation_responses = [ | |
"Consider pre-processing methods to reduce bias in the training data.", | |
"Apply in-processing methods to mitigate bias during model training.", | |
"Use post-processing methods to adjust the model's outputs for fairness.", | |
"Evaluate the model using fairness metrics like demographic parity and equal opportunity.", | |
"Ensure compliance with legal frameworks such as GDPR and non-discrimination laws." | |
] | |
return f"Bias Mitigation Perspective: {random.choice(bias_mitigation_responses)}" | |
class PsychologicalPerspective: | |
def __init__(self, config: Dict[str, Any]): | |
self.config = config | |
def generate_response(self, question: str) -> str: | |
psychological_perspectives = [ | |
f"Consider the psychological impact of '{question}'.", | |
f"Analyze '{question}' from a cognitive-behavioral perspective.", | |
f"Reflect on '{question}' through the lens of human psychology." | |
] | |
return f"Psychological Perspective: {random.choice(psychological_perspectives)}" |