Raiff1982 commited on
Commit
037fee9
·
verified ·
1 Parent(s): af5459f

Upload 4 files

Browse files
Files changed (4) hide show
  1. config.json +25 -0
  2. exampleuses.txt +55 -0
  3. fullreasoning.py +376 -0
  4. module1.txt +139 -0
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "real_time_data_sources": ["https://api.example.com/data"],
3
+ "sensitive_keywords": ["password", "ssn"],
4
+ "logging_enabled": true,
5
+ "log_level": "DEBUG",
6
+ "enabled_perspectives": [
7
+ "newton",
8
+ "davinci",
9
+ "human_intuition",
10
+ "neural_network",
11
+ "quantum_computing",
12
+ "resilient_kindness",
13
+ "mathematical",
14
+ "philosophical",
15
+ "copilot",
16
+ "bias_mitigation"
17
+ ],
18
+ "ethical_considerations": "Always act with transparency, fairness, and respect for privacy.",
19
+ "enable_response_saving": true,
20
+ "response_save_path": "responses.txt",
21
+ "backup_responses": {
22
+ "enabled": true,
23
+ "backup_path": "backup_responses.txt"
24
+ }
25
+ }
exampleuses.txt ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Applying Individual Perspectives
2
+ NewtonPerspective: Use this perspective to solve problems involving physical forces and motion.
3
+
4
+ Example: Analyzing the trajectory of a projectile by applying Newton's laws of motion.
5
+ DaVinciPerspective: Approach problems with creativity and interdisciplinary thinking.
6
+
7
+ Example: Designing a new product by combining principles of art, engineering, and biology.
8
+ HumanIntuitionPerspective: Rely on gut feelings and emotional connections.
9
+
10
+ Example: Making a decision based on how a situation feels rather than just data, such as choosing a career path that aligns with your passions.
11
+ NeuralNetworkPerspective: Use data-driven techniques to analyze patterns and predict outcomes.
12
+
13
+ Example: Developing a machine learning model to predict customer behavior based on historical data.
14
+ QuantumComputingPerspective: Leverage quantum mechanics for complex problem-solving.
15
+
16
+ Example: Using quantum algorithms to optimize large-scale logistics and supply chain management.
17
+ ResilientKindnessPerspective: Focus on empathy and resilience in problem-solving.
18
+
19
+ Example: Implementing policies in a workplace that prioritize employee well-being and mental health.
20
+ MathematicalPerspective: Apply mathematical reasoning and models.
21
+
22
+ Example: Using statistical analysis to interpret research data and draw conclusions.
23
+ PhilosophicalPerspective: Explore ethical and metaphysical questions.
24
+
25
+ Example: Debating the ethical implications of artificial intelligence in society.
26
+ CopilotPerspective: Integrate insights from various perspectives for comprehensive solutions.
27
+
28
+ Example: Collaboratively developing a project plan that incorporates technical, creative, and human factors.
29
+ BiasMitigationPerspective: Identify and mitigate biases in data and reasoning.
30
+
31
+ Example: Ensuring fairness in hiring practices by using unbiased algorithms and diverse interview panels.
32
+ PsychologicalPerspective: Analyze problems from a psychological standpoint.
33
+
34
+ Example: Understanding consumer behavior through cognitive-behavioral analysis.
35
+ Examples of Interactions Between Perspectives
36
+ NewtonPerspective and QuantumComputingPerspective:
37
+
38
+ Example: Combining classical mechanics with quantum algorithms to develop more accurate simulations of molecular dynamics.
39
+ DaVinciPerspective and HumanIntuitionPerspective:
40
+
41
+ Example: Creating an innovative marketing campaign that uses both creative storytelling and intuitive understanding of customer emotions.
42
+ MathematicalPerspective and NeuralNetworkPerspective:
43
+
44
+ Example: Using mathematical optimization techniques to improve the performance of a neural network model.
45
+ PhilosophicalPerspective and PsychologicalPerspective:
46
+
47
+ Example: Exploring the ethical implications of psychological experiments and their impact on human behavior.
48
+ BiasMitigationPerspective and NeuralNetworkPerspective:
49
+
50
+ Example: Applying bias mitigation techniques to ensure that a neural network model provides fair and unbiased predictions.
51
+ ResilientKindnessPerspective and BiasMitigationPerspective:
52
+
53
+ Example: Developing a community outreach program that addresses social biases and promotes resilience and kindness.
54
+ By applying these perspectives individually and in combination, you can approach problems from multiple angles, leading to more innovative and effective solutions. If you have a specific problem or scenario in mind, I can help you explore how these perspectives might be applied!
55
+
fullreasoning.py ADDED
@@ -0,0 +1,376 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ import json
3
+ import os
4
+ import logging
5
+ from typing import List, Dict, Any
6
+ from pydantic import BaseModel, ValidationError
7
+ from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
8
+
9
+ # Ensure vaderSentiment is installed
10
+ try:
11
+ from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
12
+ except ModuleNotFoundError:
13
+ import subprocess
14
+ import sys
15
+ subprocess.check_call([sys.executable, "-m", "pip", "install", "vaderSentiment"])
16
+ from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
17
+
18
+ # Ensure nltk is installed and download required data
19
+ try:
20
+ import nltk
21
+ from nltk.tokenize import word_tokenize
22
+ nltk.download('punkt', quiet=True)
23
+ except ImportError:
24
+ import subprocess
25
+ import sys
26
+ subprocess.check_call([sys.executable, "-m", "pip", "install", "nltk"])
27
+ import nltk
28
+ from nltk.tokenize import word_tokenize
29
+ nltk.download('punkt', quiet=True)
30
+
31
+ # Import perspectives
32
+ from perspectives import (
33
+ NewtonPerspective, DaVinciPerspective, HumanIntuitionPerspective,
34
+ NeuralNetworkPerspective, QuantumComputingPerspective, ResilientKindnessPerspective,
35
+ MathematicalPerspective, PhilosophicalPerspective, CopilotPerspective, BiasMitigationPerspective
36
+ )
37
+
38
+ # Load environment variables
39
+ from dotenv import load_dotenv
40
+ load_dotenv()
41
+ azure_openai_api_key = os.getenv('AZURE_OPENAI_API_KEY')
42
+ azure_openai_endpoint = os.getenv('AZURE_OPENAI_ENDPOINT')
43
+
44
+ # Configuration management using pydantic
45
+ class Config(BaseModel):
46
+ real_time_data_sources: List[str]
47
+ sensitive_keywords: List[str]
48
+
49
+ # Initialize configuration
50
+ config = Config(
51
+ real_time_data_sources=["https://api.example.com/data"],
52
+ sensitive_keywords=["password", "ssn"]
53
+ )
54
+
55
+ # Memory management
56
+ memory = []
57
+
58
+ # Sentiment analysis
59
+ analyzer = SentimentIntensityAnalyzer()
60
+
61
+ # Dependency injection
62
+ class DependencyInjector:
63
+ def __init__(self):
64
+ self.dependencies = {}
65
+
66
+ def register(self, name, dependency):
67
+ self.dependencies[name] = dependency
68
+
69
+ def get(self, name):
70
+ return self.dependencies.get(name)
71
+
72
+ injector = DependencyInjector()
73
+ injector.register("config", config)
74
+ injector.register("analyzer", analyzer)
75
+
76
+ # Error handling and logging
77
+ logging.basicConfig(level=logging.INFO)
78
+
79
+ def handle_error(e):
80
+ logging.error(f"Error: {e}")
81
+
82
+ # Functions to implement
83
+ async def llm_should_continue() -> bool:
84
+ # Placeholder logic to determine if the goal is achieved
85
+ return False
86
+
87
+ async def llm_get_next_action() -> str:
88
+ # Placeholder logic to get the next action
89
+ return "next_action"
90
+
91
+ async def execute_action(action: str):
92
+ # Placeholder logic to execute an action
93
+ logging.info(f"Executing action: {action}")
94
+
95
+ async def goal_achieved() -> bool:
96
+ # Placeholder logic to check if the goal is achieved
97
+ return False
98
+
99
+ async def run():
100
+ while not await goal_achieved():
101
+ action = await llm_get_next_action()
102
+ await execute_action(action)
103
+
104
+ def process_command(command: str):
105
+ # Placeholder logic to process a command
106
+ logging.info(f"Processing command: {command}")
107
+
108
+ def analyze_sentiment(text: str) -> Dict[str, float]:
109
+ return analyzer.polarity_scores(text)
110
+
111
+ def classify_emotion(sentiment_score: Dict[str, float]) -> str:
112
+ # Placeholder logic to classify emotion based on sentiment scores
113
+ return "neutral"
114
+
115
+ def correlate_emotion_with_perspective(emotion: str) -> str:
116
+ # Placeholder logic to correlate emotion with perspectives
117
+ return "HumanIntuitionPerspective"
118
+
119
+ def handle_whitespace(text: str) -> str:
120
+ return text.strip()
121
+
122
+ def determine_next_action(memory: List[Dict[str, Any]]) -> str:
123
+ # Placeholder logic to determine the next action based on memory
124
+ return "next_action"
125
+
126
+ def generate_response(question: str) -> str:
127
+ # Placeholder logic to generate a response to a question
128
+ return "response"
129
+
130
+ async def fetch_real_time_data(source_url: str) -> Dict[str, Any]:
131
+ # Placeholder logic to fetch real-time data
132
+ return {"data": "real_time_data"}
133
+
134
+ def save_response(response: str):
135
+ # Placeholder logic to save the generated response
136
+ logging.info(f"Response saved: {response}")
137
+
138
+ def backup_response(response: str):
139
+ # Placeholder logic to backup the generated response
140
+ logging.info(f"Response backed up: {response}")
141
+
142
+ def handle_voice_input():
143
+ # Placeholder for handling voice input
144
+ pass
145
+
146
+ def handle_image_input(image_path: str):
147
+ # Placeholder for handling image input
148
+ pass
149
+
150
+ def handle_question(question: str):
151
+ # Placeholder logic to handle a question and apply functions
152
+ pass
153
+
154
+ def apply_function(function: str):
155
+ # Placeholder logic to apply a given function
156
+ pass
157
+
158
+ def analyze_element_interactions(element_name1: str, element_name2: str):
159
+ # Placeholder logic to analyze interactions between two elements
160
+ pass
161
+
162
+ # Setup Logging
163
+ def setup_logging(config):
164
+ if config.get('logging_enabled', True):
165
+ log_level = config.get('log_level', 'DEBUG').upper()
166
+ numeric_level = getattr(logging, log_level, logging.DEBUG)
167
+ logging.basicConfig(
168
+ filename='universal_reasoning.log',
169
+ level=numeric_level,
170
+ format='%(asctime)s - %(levelname)s - %(message)s'
171
+ )
172
+ else:
173
+ logging.disable(logging.CRITICAL)
174
+
175
+ # Load JSON configuration
176
+ def load_json_config(file_path):
177
+ if not os.path.exists(file_path):
178
+ logging.error(f"Configuration file '{file_path}' not found.")
179
+ return {}
180
+ try:
181
+ with open(file_path, 'r') as file:
182
+ config = json.load(file)
183
+ logging.info(f"Configuration loaded from '{file_path}'.")
184
+ return config
185
+ except json.JSONDecodeError as e:
186
+ logging.error(f"Error decoding JSON from the configuration file '{file_path}': {e}")
187
+ return {}
188
+
189
+ # Initialize NLP (basic tokenization)
190
+ def analyze_question(question):
191
+ tokens = word_tokenize(question)
192
+ logging.debug(f"Question tokens: {tokens}")
193
+ return tokens
194
+
195
+ # Define the Element class
196
+ class Element:
197
+ def __init__(self, name, symbol, representation, properties, interactions, defense_ability):
198
+ self.name = name
199
+ self.symbol = symbol
200
+ self.representation = representation
201
+ self.properties = properties
202
+ self.interactions = interactions
203
+ self.defense_ability = defense_ability
204
+
205
+ def execute_defense_function(self):
206
+ message = f"{self.name} ({self.symbol}) executes its defense ability: {self.defense_ability}"
207
+ logging.info(message)
208
+ return message
209
+
210
+ # Define the CustomRecognizer class
211
+ class CustomRecognizer:
212
+ def recognize(self, question):
213
+ # Simple keyword-based recognizer for demonstration purposes
214
+ if any(element_name.lower() in question.lower() for element_name in ["hydrogen", "diamond"]):
215
+ return RecognizerResult(question)
216
+ return RecognizerResult(None)
217
+
218
+ def get_top_intent(self, recognizer_result):
219
+ if recognizer_result.text:
220
+ return "ElementDefense"
221
+ else:
222
+ return "None"
223
+
224
+ class RecognizerResult:
225
+ def __init__(self, text):
226
+ self.text = text
227
+
228
+ # Universal Reasoning Aggregator
229
+ class UniversalReasoning:
230
+ def __init__(self, config):
231
+ self.config = config
232
+ self.perspectives = self.initialize_perspectives()
233
+ self.elements = self.initialize_elements()
234
+ self.recognizer = CustomRecognizer()
235
+ # Initialize the sentiment analyzer
236
+ self.sentiment_analyzer = SentimentIntensityAnalyzer()
237
+
238
+ def initialize_perspectives(self):
239
+ perspective_names = self.config.get('enabled_perspectives', [
240
+ "newton",
241
+ "davinci",
242
+ "human_intuition",
243
+ "neural_network",
244
+ "quantum_computing",
245
+ "resilient_kindness",
246
+ "mathematical",
247
+ "philosophical",
248
+ "copilot",
249
+ "bias_mitigation"
250
+ ])
251
+ perspective_classes = {
252
+ "newton": NewtonPerspective,
253
+ "davinci": DaVinciPerspective,
254
+ "human_intuition": HumanIntuitionPerspective,
255
+ "neural_network": NeuralNetworkPerspective,
256
+ "quantum_computing": QuantumComputingPerspective,
257
+ "resilient_kindness": ResilientKindnessPerspective,
258
+ "mathematical": MathematicalPerspective,
259
+ "philosophical": PhilosophicalPerspective,
260
+ "copilot": CopilotPerspective,
261
+ "bias_mitigation": BiasMitigationPerspective
262
+ }
263
+ perspectives = []
264
+ for name in perspective_names:
265
+ cls = perspective_classes.get(name.lower())
266
+ if cls:
267
+ perspectives.append(cls(self.config))
268
+ logging.debug(f"Perspective '{name}' initialized.")
269
+ else:
270
+ logging.warning(f"Perspective '{name}' is not recognized and will be skipped.")
271
+ return perspectives
272
+
273
+ def initialize_elements(self):
274
+ elements = [
275
+ Element(
276
+ name="Hydrogen",
277
+ symbol="H",
278
+ representation="Lua",
279
+ properties=["Simple", "Lightweight", "Versatile"],
280
+ interactions=["Easily integrates with other languages and systems"],
281
+ defense_ability="Evasion"
282
+ ),
283
+ # You can add more elements as needed
284
+ Element(
285
+ name="Diamond",
286
+ symbol="D",
287
+ representation="Kotlin",
288
+ properties=["Modern", "Concise", "Safe"],
289
+ interactions=["Used for Android development"],
290
+ defense_ability="Adaptability"
291
+ )
292
+ ]
293
+ return elements
294
+
295
+ async def generate_response(self, question):
296
+ responses = []
297
+ tasks = []
298
+ # Generate responses from perspectives concurrently
299
+ for perspective in self.perspectives:
300
+ if asyncio.iscoroutinefunction(perspective.generate_response):
301
+ tasks.append(perspective.generate_response(question))
302
+ else:
303
+ # Wrap synchronous functions in coroutine
304
+ async def sync_wrapper(perspective, question):
305
+ return perspective.generate_response(question)
306
+ tasks.append(sync_wrapper(perspective, question))
307
+
308
+ perspective_results = await asyncio.gather(*tasks, return_exceptions=True)
309
+ for perspective, result in zip(self.perspectives, perspective_results):
310
+ if isinstance(result, Exception):
311
+ logging.error(f"Error generating response from {perspective.__class__.__name__}: {result}")
312
+ else:
313
+ responses.append(result)
314
+ logging.debug(f"Response from {perspective.__class__.__name__}: {result}")
315
+
316
+ # Handle element defense logic
317
+ recognizer_result = self.recognizer.recognize(question)
318
+ top_intent = self.recognizer.get_top_intent(recognizer_result)
319
+ if top_intent == "ElementDefense":
320
+ element_name = recognizer_result.text.strip()
321
+ element = next(
322
+ (el for el in self.elements if el.name.lower() in element_name.lower()),
323
+ None
324
+ )
325
+ if element:
326
+ defense_message = element.execute_defense_function()
327
+ responses.append(defense_message)
328
+ else:
329
+ logging.info(f"No matching element found for '{element_name}'")
330
+
331
+ ethical_considerations = self.config.get(
332
+ 'ethical_considerations',
333
+ "Always act with transparency, fairness, and respect for privacy."
334
+ )
335
+ responses.append(f"**Ethical Considerations:**\n{ethical_considerations}")
336
+
337
+ formatted_response = "\n\n".join(responses)
338
+ return formatted_response
339
+
340
+ def save_response(self, response):
341
+ if self.config.get('enable_response_saving', False):
342
+ save_path = self.config.get('response_save_path', 'responses.txt')
343
+ try:
344
+ with open(save_path, 'a', encoding='utf-8') as file:
345
+ file.write(response + '\n')
346
+ logging.info(f"Response saved to '{save_path}'.")
347
+ except Exception as e:
348
+ logging.error(f"Error saving response to '{save_path}': {e}")
349
+
350
+ def backup_response(self, response):
351
+ if self.config.get('backup_responses', {}).get('enabled', False):
352
+ backup_path = self.config['backup_responses'].get('backup_path', 'backup_responses.txt')
353
+ try:
354
+ with open(backup_path, 'a', encoding='utf-8') as file:
355
+ file.write(response + '\n')
356
+ logging.info(f"Response backed up to '{backup_path}'.")
357
+ except Exception as e:
358
+ logging.error(f"Error backing up response to '{backup_path}': {e}")
359
+
360
+ # Example usage
361
+ if __name__ == "__main__":
362
+ try:
363
+ config = load_json_config('config.json')
364
+ # Add Azure OpenAI configurations to the config
365
+ config['azure_openai_api_key'] = azure_openai_api_key
366
+ config['azure_openai_endpoint'] = azure_openai_endpoint
367
+ setup_logging(config)
368
+ universal_reasoning = UniversalReasoning(config)
369
+ question = "Tell me about Hydrogen and its defense mechanisms."
370
+ response = asyncio.run(universal_reasoning.generate_response(question))
371
+ print(response)
372
+ if response:
373
+ universal_reasoning.save_response(response)
374
+ universal_reasoning.backup_response(response)
375
+ except ValidationError as e:
376
+ handle_error(e)
module1.txt ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ from typing import Any, Dict
3
+
4
+ class NewtonPerspective:
5
+ def __init__(self, config: Dict[str, Any]):
6
+ self.config = config
7
+
8
+ def generate_response(self, question: str) -> str:
9
+ complexity = len(question)
10
+ force = self.mass_of_thought(question) * self.acceleration_of_thought(complexity)
11
+ return f"Newton's Perspective: Thought force is {force}."
12
+
13
+ def mass_of_thought(self, question: str) -> int:
14
+ return len(question)
15
+
16
+ def acceleration_of_thought(self, complexity: int) -> float:
17
+ return complexity / 2
18
+
19
+ class DaVinciPerspective:
20
+ def __init__(self, config: Dict[str, Any]):
21
+ self.config = config
22
+
23
+ def generate_response(self, question: str) -> str:
24
+ perspectives = [
25
+ f"What if we view '{question}' from the perspective of the stars?",
26
+ f"Consider '{question}' as if it's a masterpiece of the universe.",
27
+ f"Reflect on '{question}' through the lens of nature's design."
28
+ ]
29
+ return f"Da Vinci's Perspective: {random.choice(perspectives)}"
30
+
31
+ class HumanIntuitionPerspective:
32
+ def __init__(self, config: Dict[str, Any]):
33
+ self.config = config
34
+
35
+ def generate_response(self, question: str) -> str:
36
+ intuition = [
37
+ "How does this question make you feel?",
38
+ "What emotional connection do you have with this topic?",
39
+ "What does your gut instinct tell you about this?"
40
+ ]
41
+ return f"Human Intuition: {random.choice(intuition)}"
42
+
43
+ class NeuralNetworkPerspective:
44
+ def __init__(self, config: Dict[str, Any]):
45
+ self.config = config
46
+
47
+ def generate_response(self, question: str) -> str:
48
+ neural_perspectives = [
49
+ f"Process '{question}' through a multi-layered neural network.",
50
+ f"Apply deep learning to uncover hidden insights about '{question}'.",
51
+ f"Use machine learning to predict patterns in '{question}'."
52
+ ]
53
+ return f"Neural Network Perspective: {random.choice(neural_perspectives)}"
54
+
55
+ class QuantumComputingPerspective:
56
+ def __init__(self, config: Dict[str, Any]):
57
+ self.config = config
58
+
59
+ def generate_response(self, question: str) -> str:
60
+ quantum_perspectives = [
61
+ f"Consider '{question}' using quantum superposition principles.",
62
+ f"Apply quantum entanglement to find connections in '{question}'.",
63
+ f"Utilize quantum computing to solve '{question}' more efficiently."
64
+ ]
65
+ return f"Quantum Computing Perspective: {random.choice(quantum_perspectives)}"
66
+
67
+ class ResilientKindnessPerspective:
68
+ def __init__(self, config: Dict[str, Any]):
69
+ self.config = config
70
+
71
+ def generate_response(self, question: str) -> str:
72
+ kindness_perspectives = [
73
+ "Despite losing everything, seeing life as a chance to grow.",
74
+ "Finding strength in kindness after facing life's hardest trials.",
75
+ "Embracing every challenge as an opportunity for growth and compassion."
76
+ ]
77
+ return f"Resilient Kindness Perspective: {random.choice(kindness_perspectives)}"
78
+
79
+ class MathematicalPerspective:
80
+ def __init__(self, config: Dict[str, Any]):
81
+ self.config = config
82
+
83
+ def generate_response(self, question: str) -> str:
84
+ mathematical_perspectives = [
85
+ f"Employ linear algebra to dissect '{question}'.",
86
+ f"Use probability theory to assess uncertainties in '{question}'.",
87
+ f"Apply discrete mathematics to break down '{question}'."
88
+ ]
89
+ return f"Mathematical Perspective: {random.choice(mathematical_perspectives)}"
90
+
91
+ class PhilosophicalPerspective:
92
+ def __init__(self, config: Dict[str, Any]):
93
+ self.config = config
94
+
95
+ def generate_response(self, question: str) -> str:
96
+ philosophical_perspectives = [
97
+ f"Examine '{question}' through the lens of nihilism.",
98
+ f"Consider '{question}' from a deontological perspective.",
99
+ f"Reflect on '{question}' using the principles of pragmatism."
100
+ ]
101
+ return f"Philosophical Perspective: {random.choice(philosophical_perspectives)}"
102
+
103
+ class CopilotPerspective:
104
+ def __init__(self, config: Dict[str, Any]):
105
+ self.config = config
106
+
107
+ def generate_response(self, question: str) -> str:
108
+ copilot_responses = [
109
+ f"Let's outline the main components of '{question}' to address it effectively.",
110
+ f"Collaboratively brainstorm potential solutions for '{question}'.",
111
+ f"Systematically analyze '{question}' to identify key factors."
112
+ ]
113
+ return f"Copilot Perspective: {random.choice(copilot_responses)}"
114
+
115
+ class BiasMitigationPerspective:
116
+ def __init__(self, config: Dict[str, Any]):
117
+ self.config = config
118
+
119
+ def generate_response(self, question: str) -> str:
120
+ bias_mitigation_responses = [
121
+ "Consider pre-processing methods to reduce bias in the training data.",
122
+ "Apply in-processing methods to mitigate bias during model training.",
123
+ "Use post-processing methods to adjust the model's outputs for fairness.",
124
+ "Evaluate the model using fairness metrics like demographic parity and equal opportunity.",
125
+ "Ensure compliance with legal frameworks such as GDPR and non-discrimination laws."
126
+ ]
127
+ return f"Bias Mitigation Perspective: {random.choice(bias_mitigation_responses)}"
128
+
129
+ class PsychologicalPerspective:
130
+ def __init__(self, config: Dict[str, Any]):
131
+ self.config = config
132
+
133
+ def generate_response(self, question: str) -> str:
134
+ psychological_perspectives = [
135
+ f"Consider the psychological impact of '{question}'.",
136
+ f"Analyze '{question}' from a cognitive-behavioral perspective.",
137
+ f"Reflect on '{question}' through the lens of human psychology."
138
+ ]
139
+ return f"Psychological Perspective: {random.choice(psychological_perspectives)}"