Spaces:
Runtime error
Runtime error
Upload 4 files
Browse files- config.json +25 -0
- exampleuses.txt +55 -0
- fullreasoning.py +376 -0
- module1.txt +139 -0
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"real_time_data_sources": ["https://api.example.com/data"],
|
3 |
+
"sensitive_keywords": ["password", "ssn"],
|
4 |
+
"logging_enabled": true,
|
5 |
+
"log_level": "DEBUG",
|
6 |
+
"enabled_perspectives": [
|
7 |
+
"newton",
|
8 |
+
"davinci",
|
9 |
+
"human_intuition",
|
10 |
+
"neural_network",
|
11 |
+
"quantum_computing",
|
12 |
+
"resilient_kindness",
|
13 |
+
"mathematical",
|
14 |
+
"philosophical",
|
15 |
+
"copilot",
|
16 |
+
"bias_mitigation"
|
17 |
+
],
|
18 |
+
"ethical_considerations": "Always act with transparency, fairness, and respect for privacy.",
|
19 |
+
"enable_response_saving": true,
|
20 |
+
"response_save_path": "responses.txt",
|
21 |
+
"backup_responses": {
|
22 |
+
"enabled": true,
|
23 |
+
"backup_path": "backup_responses.txt"
|
24 |
+
}
|
25 |
+
}
|
exampleuses.txt
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Applying Individual Perspectives
|
2 |
+
NewtonPerspective: Use this perspective to solve problems involving physical forces and motion.
|
3 |
+
|
4 |
+
Example: Analyzing the trajectory of a projectile by applying Newton's laws of motion.
|
5 |
+
DaVinciPerspective: Approach problems with creativity and interdisciplinary thinking.
|
6 |
+
|
7 |
+
Example: Designing a new product by combining principles of art, engineering, and biology.
|
8 |
+
HumanIntuitionPerspective: Rely on gut feelings and emotional connections.
|
9 |
+
|
10 |
+
Example: Making a decision based on how a situation feels rather than just data, such as choosing a career path that aligns with your passions.
|
11 |
+
NeuralNetworkPerspective: Use data-driven techniques to analyze patterns and predict outcomes.
|
12 |
+
|
13 |
+
Example: Developing a machine learning model to predict customer behavior based on historical data.
|
14 |
+
QuantumComputingPerspective: Leverage quantum mechanics for complex problem-solving.
|
15 |
+
|
16 |
+
Example: Using quantum algorithms to optimize large-scale logistics and supply chain management.
|
17 |
+
ResilientKindnessPerspective: Focus on empathy and resilience in problem-solving.
|
18 |
+
|
19 |
+
Example: Implementing policies in a workplace that prioritize employee well-being and mental health.
|
20 |
+
MathematicalPerspective: Apply mathematical reasoning and models.
|
21 |
+
|
22 |
+
Example: Using statistical analysis to interpret research data and draw conclusions.
|
23 |
+
PhilosophicalPerspective: Explore ethical and metaphysical questions.
|
24 |
+
|
25 |
+
Example: Debating the ethical implications of artificial intelligence in society.
|
26 |
+
CopilotPerspective: Integrate insights from various perspectives for comprehensive solutions.
|
27 |
+
|
28 |
+
Example: Collaboratively developing a project plan that incorporates technical, creative, and human factors.
|
29 |
+
BiasMitigationPerspective: Identify and mitigate biases in data and reasoning.
|
30 |
+
|
31 |
+
Example: Ensuring fairness in hiring practices by using unbiased algorithms and diverse interview panels.
|
32 |
+
PsychologicalPerspective: Analyze problems from a psychological standpoint.
|
33 |
+
|
34 |
+
Example: Understanding consumer behavior through cognitive-behavioral analysis.
|
35 |
+
Examples of Interactions Between Perspectives
|
36 |
+
NewtonPerspective and QuantumComputingPerspective:
|
37 |
+
|
38 |
+
Example: Combining classical mechanics with quantum algorithms to develop more accurate simulations of molecular dynamics.
|
39 |
+
DaVinciPerspective and HumanIntuitionPerspective:
|
40 |
+
|
41 |
+
Example: Creating an innovative marketing campaign that uses both creative storytelling and intuitive understanding of customer emotions.
|
42 |
+
MathematicalPerspective and NeuralNetworkPerspective:
|
43 |
+
|
44 |
+
Example: Using mathematical optimization techniques to improve the performance of a neural network model.
|
45 |
+
PhilosophicalPerspective and PsychologicalPerspective:
|
46 |
+
|
47 |
+
Example: Exploring the ethical implications of psychological experiments and their impact on human behavior.
|
48 |
+
BiasMitigationPerspective and NeuralNetworkPerspective:
|
49 |
+
|
50 |
+
Example: Applying bias mitigation techniques to ensure that a neural network model provides fair and unbiased predictions.
|
51 |
+
ResilientKindnessPerspective and BiasMitigationPerspective:
|
52 |
+
|
53 |
+
Example: Developing a community outreach program that addresses social biases and promotes resilience and kindness.
|
54 |
+
By applying these perspectives individually and in combination, you can approach problems from multiple angles, leading to more innovative and effective solutions. If you have a specific problem or scenario in mind, I can help you explore how these perspectives might be applied!
|
55 |
+
|
fullreasoning.py
ADDED
@@ -0,0 +1,376 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import logging
|
5 |
+
from typing import List, Dict, Any
|
6 |
+
from pydantic import BaseModel, ValidationError
|
7 |
+
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
|
8 |
+
|
9 |
+
# Ensure vaderSentiment is installed
|
10 |
+
try:
|
11 |
+
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
|
12 |
+
except ModuleNotFoundError:
|
13 |
+
import subprocess
|
14 |
+
import sys
|
15 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", "vaderSentiment"])
|
16 |
+
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
|
17 |
+
|
18 |
+
# Ensure nltk is installed and download required data
|
19 |
+
try:
|
20 |
+
import nltk
|
21 |
+
from nltk.tokenize import word_tokenize
|
22 |
+
nltk.download('punkt', quiet=True)
|
23 |
+
except ImportError:
|
24 |
+
import subprocess
|
25 |
+
import sys
|
26 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", "nltk"])
|
27 |
+
import nltk
|
28 |
+
from nltk.tokenize import word_tokenize
|
29 |
+
nltk.download('punkt', quiet=True)
|
30 |
+
|
31 |
+
# Import perspectives
|
32 |
+
from perspectives import (
|
33 |
+
NewtonPerspective, DaVinciPerspective, HumanIntuitionPerspective,
|
34 |
+
NeuralNetworkPerspective, QuantumComputingPerspective, ResilientKindnessPerspective,
|
35 |
+
MathematicalPerspective, PhilosophicalPerspective, CopilotPerspective, BiasMitigationPerspective
|
36 |
+
)
|
37 |
+
|
38 |
+
# Load environment variables
|
39 |
+
from dotenv import load_dotenv
|
40 |
+
load_dotenv()
|
41 |
+
azure_openai_api_key = os.getenv('AZURE_OPENAI_API_KEY')
|
42 |
+
azure_openai_endpoint = os.getenv('AZURE_OPENAI_ENDPOINT')
|
43 |
+
|
44 |
+
# Configuration management using pydantic
|
45 |
+
class Config(BaseModel):
|
46 |
+
real_time_data_sources: List[str]
|
47 |
+
sensitive_keywords: List[str]
|
48 |
+
|
49 |
+
# Initialize configuration
|
50 |
+
config = Config(
|
51 |
+
real_time_data_sources=["https://api.example.com/data"],
|
52 |
+
sensitive_keywords=["password", "ssn"]
|
53 |
+
)
|
54 |
+
|
55 |
+
# Memory management
|
56 |
+
memory = []
|
57 |
+
|
58 |
+
# Sentiment analysis
|
59 |
+
analyzer = SentimentIntensityAnalyzer()
|
60 |
+
|
61 |
+
# Dependency injection
|
62 |
+
class DependencyInjector:
|
63 |
+
def __init__(self):
|
64 |
+
self.dependencies = {}
|
65 |
+
|
66 |
+
def register(self, name, dependency):
|
67 |
+
self.dependencies[name] = dependency
|
68 |
+
|
69 |
+
def get(self, name):
|
70 |
+
return self.dependencies.get(name)
|
71 |
+
|
72 |
+
injector = DependencyInjector()
|
73 |
+
injector.register("config", config)
|
74 |
+
injector.register("analyzer", analyzer)
|
75 |
+
|
76 |
+
# Error handling and logging
|
77 |
+
logging.basicConfig(level=logging.INFO)
|
78 |
+
|
79 |
+
def handle_error(e):
|
80 |
+
logging.error(f"Error: {e}")
|
81 |
+
|
82 |
+
# Functions to implement
|
83 |
+
async def llm_should_continue() -> bool:
|
84 |
+
# Placeholder logic to determine if the goal is achieved
|
85 |
+
return False
|
86 |
+
|
87 |
+
async def llm_get_next_action() -> str:
|
88 |
+
# Placeholder logic to get the next action
|
89 |
+
return "next_action"
|
90 |
+
|
91 |
+
async def execute_action(action: str):
|
92 |
+
# Placeholder logic to execute an action
|
93 |
+
logging.info(f"Executing action: {action}")
|
94 |
+
|
95 |
+
async def goal_achieved() -> bool:
|
96 |
+
# Placeholder logic to check if the goal is achieved
|
97 |
+
return False
|
98 |
+
|
99 |
+
async def run():
|
100 |
+
while not await goal_achieved():
|
101 |
+
action = await llm_get_next_action()
|
102 |
+
await execute_action(action)
|
103 |
+
|
104 |
+
def process_command(command: str):
|
105 |
+
# Placeholder logic to process a command
|
106 |
+
logging.info(f"Processing command: {command}")
|
107 |
+
|
108 |
+
def analyze_sentiment(text: str) -> Dict[str, float]:
|
109 |
+
return analyzer.polarity_scores(text)
|
110 |
+
|
111 |
+
def classify_emotion(sentiment_score: Dict[str, float]) -> str:
|
112 |
+
# Placeholder logic to classify emotion based on sentiment scores
|
113 |
+
return "neutral"
|
114 |
+
|
115 |
+
def correlate_emotion_with_perspective(emotion: str) -> str:
|
116 |
+
# Placeholder logic to correlate emotion with perspectives
|
117 |
+
return "HumanIntuitionPerspective"
|
118 |
+
|
119 |
+
def handle_whitespace(text: str) -> str:
|
120 |
+
return text.strip()
|
121 |
+
|
122 |
+
def determine_next_action(memory: List[Dict[str, Any]]) -> str:
|
123 |
+
# Placeholder logic to determine the next action based on memory
|
124 |
+
return "next_action"
|
125 |
+
|
126 |
+
def generate_response(question: str) -> str:
|
127 |
+
# Placeholder logic to generate a response to a question
|
128 |
+
return "response"
|
129 |
+
|
130 |
+
async def fetch_real_time_data(source_url: str) -> Dict[str, Any]:
|
131 |
+
# Placeholder logic to fetch real-time data
|
132 |
+
return {"data": "real_time_data"}
|
133 |
+
|
134 |
+
def save_response(response: str):
|
135 |
+
# Placeholder logic to save the generated response
|
136 |
+
logging.info(f"Response saved: {response}")
|
137 |
+
|
138 |
+
def backup_response(response: str):
|
139 |
+
# Placeholder logic to backup the generated response
|
140 |
+
logging.info(f"Response backed up: {response}")
|
141 |
+
|
142 |
+
def handle_voice_input():
|
143 |
+
# Placeholder for handling voice input
|
144 |
+
pass
|
145 |
+
|
146 |
+
def handle_image_input(image_path: str):
|
147 |
+
# Placeholder for handling image input
|
148 |
+
pass
|
149 |
+
|
150 |
+
def handle_question(question: str):
|
151 |
+
# Placeholder logic to handle a question and apply functions
|
152 |
+
pass
|
153 |
+
|
154 |
+
def apply_function(function: str):
|
155 |
+
# Placeholder logic to apply a given function
|
156 |
+
pass
|
157 |
+
|
158 |
+
def analyze_element_interactions(element_name1: str, element_name2: str):
|
159 |
+
# Placeholder logic to analyze interactions between two elements
|
160 |
+
pass
|
161 |
+
|
162 |
+
# Setup Logging
|
163 |
+
def setup_logging(config):
|
164 |
+
if config.get('logging_enabled', True):
|
165 |
+
log_level = config.get('log_level', 'DEBUG').upper()
|
166 |
+
numeric_level = getattr(logging, log_level, logging.DEBUG)
|
167 |
+
logging.basicConfig(
|
168 |
+
filename='universal_reasoning.log',
|
169 |
+
level=numeric_level,
|
170 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
171 |
+
)
|
172 |
+
else:
|
173 |
+
logging.disable(logging.CRITICAL)
|
174 |
+
|
175 |
+
# Load JSON configuration
|
176 |
+
def load_json_config(file_path):
|
177 |
+
if not os.path.exists(file_path):
|
178 |
+
logging.error(f"Configuration file '{file_path}' not found.")
|
179 |
+
return {}
|
180 |
+
try:
|
181 |
+
with open(file_path, 'r') as file:
|
182 |
+
config = json.load(file)
|
183 |
+
logging.info(f"Configuration loaded from '{file_path}'.")
|
184 |
+
return config
|
185 |
+
except json.JSONDecodeError as e:
|
186 |
+
logging.error(f"Error decoding JSON from the configuration file '{file_path}': {e}")
|
187 |
+
return {}
|
188 |
+
|
189 |
+
# Initialize NLP (basic tokenization)
|
190 |
+
def analyze_question(question):
|
191 |
+
tokens = word_tokenize(question)
|
192 |
+
logging.debug(f"Question tokens: {tokens}")
|
193 |
+
return tokens
|
194 |
+
|
195 |
+
# Define the Element class
|
196 |
+
class Element:
|
197 |
+
def __init__(self, name, symbol, representation, properties, interactions, defense_ability):
|
198 |
+
self.name = name
|
199 |
+
self.symbol = symbol
|
200 |
+
self.representation = representation
|
201 |
+
self.properties = properties
|
202 |
+
self.interactions = interactions
|
203 |
+
self.defense_ability = defense_ability
|
204 |
+
|
205 |
+
def execute_defense_function(self):
|
206 |
+
message = f"{self.name} ({self.symbol}) executes its defense ability: {self.defense_ability}"
|
207 |
+
logging.info(message)
|
208 |
+
return message
|
209 |
+
|
210 |
+
# Define the CustomRecognizer class
|
211 |
+
class CustomRecognizer:
|
212 |
+
def recognize(self, question):
|
213 |
+
# Simple keyword-based recognizer for demonstration purposes
|
214 |
+
if any(element_name.lower() in question.lower() for element_name in ["hydrogen", "diamond"]):
|
215 |
+
return RecognizerResult(question)
|
216 |
+
return RecognizerResult(None)
|
217 |
+
|
218 |
+
def get_top_intent(self, recognizer_result):
|
219 |
+
if recognizer_result.text:
|
220 |
+
return "ElementDefense"
|
221 |
+
else:
|
222 |
+
return "None"
|
223 |
+
|
224 |
+
class RecognizerResult:
|
225 |
+
def __init__(self, text):
|
226 |
+
self.text = text
|
227 |
+
|
228 |
+
# Universal Reasoning Aggregator
|
229 |
+
class UniversalReasoning:
|
230 |
+
def __init__(self, config):
|
231 |
+
self.config = config
|
232 |
+
self.perspectives = self.initialize_perspectives()
|
233 |
+
self.elements = self.initialize_elements()
|
234 |
+
self.recognizer = CustomRecognizer()
|
235 |
+
# Initialize the sentiment analyzer
|
236 |
+
self.sentiment_analyzer = SentimentIntensityAnalyzer()
|
237 |
+
|
238 |
+
def initialize_perspectives(self):
|
239 |
+
perspective_names = self.config.get('enabled_perspectives', [
|
240 |
+
"newton",
|
241 |
+
"davinci",
|
242 |
+
"human_intuition",
|
243 |
+
"neural_network",
|
244 |
+
"quantum_computing",
|
245 |
+
"resilient_kindness",
|
246 |
+
"mathematical",
|
247 |
+
"philosophical",
|
248 |
+
"copilot",
|
249 |
+
"bias_mitigation"
|
250 |
+
])
|
251 |
+
perspective_classes = {
|
252 |
+
"newton": NewtonPerspective,
|
253 |
+
"davinci": DaVinciPerspective,
|
254 |
+
"human_intuition": HumanIntuitionPerspective,
|
255 |
+
"neural_network": NeuralNetworkPerspective,
|
256 |
+
"quantum_computing": QuantumComputingPerspective,
|
257 |
+
"resilient_kindness": ResilientKindnessPerspective,
|
258 |
+
"mathematical": MathematicalPerspective,
|
259 |
+
"philosophical": PhilosophicalPerspective,
|
260 |
+
"copilot": CopilotPerspective,
|
261 |
+
"bias_mitigation": BiasMitigationPerspective
|
262 |
+
}
|
263 |
+
perspectives = []
|
264 |
+
for name in perspective_names:
|
265 |
+
cls = perspective_classes.get(name.lower())
|
266 |
+
if cls:
|
267 |
+
perspectives.append(cls(self.config))
|
268 |
+
logging.debug(f"Perspective '{name}' initialized.")
|
269 |
+
else:
|
270 |
+
logging.warning(f"Perspective '{name}' is not recognized and will be skipped.")
|
271 |
+
return perspectives
|
272 |
+
|
273 |
+
def initialize_elements(self):
|
274 |
+
elements = [
|
275 |
+
Element(
|
276 |
+
name="Hydrogen",
|
277 |
+
symbol="H",
|
278 |
+
representation="Lua",
|
279 |
+
properties=["Simple", "Lightweight", "Versatile"],
|
280 |
+
interactions=["Easily integrates with other languages and systems"],
|
281 |
+
defense_ability="Evasion"
|
282 |
+
),
|
283 |
+
# You can add more elements as needed
|
284 |
+
Element(
|
285 |
+
name="Diamond",
|
286 |
+
symbol="D",
|
287 |
+
representation="Kotlin",
|
288 |
+
properties=["Modern", "Concise", "Safe"],
|
289 |
+
interactions=["Used for Android development"],
|
290 |
+
defense_ability="Adaptability"
|
291 |
+
)
|
292 |
+
]
|
293 |
+
return elements
|
294 |
+
|
295 |
+
async def generate_response(self, question):
|
296 |
+
responses = []
|
297 |
+
tasks = []
|
298 |
+
# Generate responses from perspectives concurrently
|
299 |
+
for perspective in self.perspectives:
|
300 |
+
if asyncio.iscoroutinefunction(perspective.generate_response):
|
301 |
+
tasks.append(perspective.generate_response(question))
|
302 |
+
else:
|
303 |
+
# Wrap synchronous functions in coroutine
|
304 |
+
async def sync_wrapper(perspective, question):
|
305 |
+
return perspective.generate_response(question)
|
306 |
+
tasks.append(sync_wrapper(perspective, question))
|
307 |
+
|
308 |
+
perspective_results = await asyncio.gather(*tasks, return_exceptions=True)
|
309 |
+
for perspective, result in zip(self.perspectives, perspective_results):
|
310 |
+
if isinstance(result, Exception):
|
311 |
+
logging.error(f"Error generating response from {perspective.__class__.__name__}: {result}")
|
312 |
+
else:
|
313 |
+
responses.append(result)
|
314 |
+
logging.debug(f"Response from {perspective.__class__.__name__}: {result}")
|
315 |
+
|
316 |
+
# Handle element defense logic
|
317 |
+
recognizer_result = self.recognizer.recognize(question)
|
318 |
+
top_intent = self.recognizer.get_top_intent(recognizer_result)
|
319 |
+
if top_intent == "ElementDefense":
|
320 |
+
element_name = recognizer_result.text.strip()
|
321 |
+
element = next(
|
322 |
+
(el for el in self.elements if el.name.lower() in element_name.lower()),
|
323 |
+
None
|
324 |
+
)
|
325 |
+
if element:
|
326 |
+
defense_message = element.execute_defense_function()
|
327 |
+
responses.append(defense_message)
|
328 |
+
else:
|
329 |
+
logging.info(f"No matching element found for '{element_name}'")
|
330 |
+
|
331 |
+
ethical_considerations = self.config.get(
|
332 |
+
'ethical_considerations',
|
333 |
+
"Always act with transparency, fairness, and respect for privacy."
|
334 |
+
)
|
335 |
+
responses.append(f"**Ethical Considerations:**\n{ethical_considerations}")
|
336 |
+
|
337 |
+
formatted_response = "\n\n".join(responses)
|
338 |
+
return formatted_response
|
339 |
+
|
340 |
+
def save_response(self, response):
|
341 |
+
if self.config.get('enable_response_saving', False):
|
342 |
+
save_path = self.config.get('response_save_path', 'responses.txt')
|
343 |
+
try:
|
344 |
+
with open(save_path, 'a', encoding='utf-8') as file:
|
345 |
+
file.write(response + '\n')
|
346 |
+
logging.info(f"Response saved to '{save_path}'.")
|
347 |
+
except Exception as e:
|
348 |
+
logging.error(f"Error saving response to '{save_path}': {e}")
|
349 |
+
|
350 |
+
def backup_response(self, response):
|
351 |
+
if self.config.get('backup_responses', {}).get('enabled', False):
|
352 |
+
backup_path = self.config['backup_responses'].get('backup_path', 'backup_responses.txt')
|
353 |
+
try:
|
354 |
+
with open(backup_path, 'a', encoding='utf-8') as file:
|
355 |
+
file.write(response + '\n')
|
356 |
+
logging.info(f"Response backed up to '{backup_path}'.")
|
357 |
+
except Exception as e:
|
358 |
+
logging.error(f"Error backing up response to '{backup_path}': {e}")
|
359 |
+
|
360 |
+
# Example usage
|
361 |
+
if __name__ == "__main__":
|
362 |
+
try:
|
363 |
+
config = load_json_config('config.json')
|
364 |
+
# Add Azure OpenAI configurations to the config
|
365 |
+
config['azure_openai_api_key'] = azure_openai_api_key
|
366 |
+
config['azure_openai_endpoint'] = azure_openai_endpoint
|
367 |
+
setup_logging(config)
|
368 |
+
universal_reasoning = UniversalReasoning(config)
|
369 |
+
question = "Tell me about Hydrogen and its defense mechanisms."
|
370 |
+
response = asyncio.run(universal_reasoning.generate_response(question))
|
371 |
+
print(response)
|
372 |
+
if response:
|
373 |
+
universal_reasoning.save_response(response)
|
374 |
+
universal_reasoning.backup_response(response)
|
375 |
+
except ValidationError as e:
|
376 |
+
handle_error(e)
|
module1.txt
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
from typing import Any, Dict
|
3 |
+
|
4 |
+
class NewtonPerspective:
|
5 |
+
def __init__(self, config: Dict[str, Any]):
|
6 |
+
self.config = config
|
7 |
+
|
8 |
+
def generate_response(self, question: str) -> str:
|
9 |
+
complexity = len(question)
|
10 |
+
force = self.mass_of_thought(question) * self.acceleration_of_thought(complexity)
|
11 |
+
return f"Newton's Perspective: Thought force is {force}."
|
12 |
+
|
13 |
+
def mass_of_thought(self, question: str) -> int:
|
14 |
+
return len(question)
|
15 |
+
|
16 |
+
def acceleration_of_thought(self, complexity: int) -> float:
|
17 |
+
return complexity / 2
|
18 |
+
|
19 |
+
class DaVinciPerspective:
|
20 |
+
def __init__(self, config: Dict[str, Any]):
|
21 |
+
self.config = config
|
22 |
+
|
23 |
+
def generate_response(self, question: str) -> str:
|
24 |
+
perspectives = [
|
25 |
+
f"What if we view '{question}' from the perspective of the stars?",
|
26 |
+
f"Consider '{question}' as if it's a masterpiece of the universe.",
|
27 |
+
f"Reflect on '{question}' through the lens of nature's design."
|
28 |
+
]
|
29 |
+
return f"Da Vinci's Perspective: {random.choice(perspectives)}"
|
30 |
+
|
31 |
+
class HumanIntuitionPerspective:
|
32 |
+
def __init__(self, config: Dict[str, Any]):
|
33 |
+
self.config = config
|
34 |
+
|
35 |
+
def generate_response(self, question: str) -> str:
|
36 |
+
intuition = [
|
37 |
+
"How does this question make you feel?",
|
38 |
+
"What emotional connection do you have with this topic?",
|
39 |
+
"What does your gut instinct tell you about this?"
|
40 |
+
]
|
41 |
+
return f"Human Intuition: {random.choice(intuition)}"
|
42 |
+
|
43 |
+
class NeuralNetworkPerspective:
|
44 |
+
def __init__(self, config: Dict[str, Any]):
|
45 |
+
self.config = config
|
46 |
+
|
47 |
+
def generate_response(self, question: str) -> str:
|
48 |
+
neural_perspectives = [
|
49 |
+
f"Process '{question}' through a multi-layered neural network.",
|
50 |
+
f"Apply deep learning to uncover hidden insights about '{question}'.",
|
51 |
+
f"Use machine learning to predict patterns in '{question}'."
|
52 |
+
]
|
53 |
+
return f"Neural Network Perspective: {random.choice(neural_perspectives)}"
|
54 |
+
|
55 |
+
class QuantumComputingPerspective:
|
56 |
+
def __init__(self, config: Dict[str, Any]):
|
57 |
+
self.config = config
|
58 |
+
|
59 |
+
def generate_response(self, question: str) -> str:
|
60 |
+
quantum_perspectives = [
|
61 |
+
f"Consider '{question}' using quantum superposition principles.",
|
62 |
+
f"Apply quantum entanglement to find connections in '{question}'.",
|
63 |
+
f"Utilize quantum computing to solve '{question}' more efficiently."
|
64 |
+
]
|
65 |
+
return f"Quantum Computing Perspective: {random.choice(quantum_perspectives)}"
|
66 |
+
|
67 |
+
class ResilientKindnessPerspective:
|
68 |
+
def __init__(self, config: Dict[str, Any]):
|
69 |
+
self.config = config
|
70 |
+
|
71 |
+
def generate_response(self, question: str) -> str:
|
72 |
+
kindness_perspectives = [
|
73 |
+
"Despite losing everything, seeing life as a chance to grow.",
|
74 |
+
"Finding strength in kindness after facing life's hardest trials.",
|
75 |
+
"Embracing every challenge as an opportunity for growth and compassion."
|
76 |
+
]
|
77 |
+
return f"Resilient Kindness Perspective: {random.choice(kindness_perspectives)}"
|
78 |
+
|
79 |
+
class MathematicalPerspective:
|
80 |
+
def __init__(self, config: Dict[str, Any]):
|
81 |
+
self.config = config
|
82 |
+
|
83 |
+
def generate_response(self, question: str) -> str:
|
84 |
+
mathematical_perspectives = [
|
85 |
+
f"Employ linear algebra to dissect '{question}'.",
|
86 |
+
f"Use probability theory to assess uncertainties in '{question}'.",
|
87 |
+
f"Apply discrete mathematics to break down '{question}'."
|
88 |
+
]
|
89 |
+
return f"Mathematical Perspective: {random.choice(mathematical_perspectives)}"
|
90 |
+
|
91 |
+
class PhilosophicalPerspective:
|
92 |
+
def __init__(self, config: Dict[str, Any]):
|
93 |
+
self.config = config
|
94 |
+
|
95 |
+
def generate_response(self, question: str) -> str:
|
96 |
+
philosophical_perspectives = [
|
97 |
+
f"Examine '{question}' through the lens of nihilism.",
|
98 |
+
f"Consider '{question}' from a deontological perspective.",
|
99 |
+
f"Reflect on '{question}' using the principles of pragmatism."
|
100 |
+
]
|
101 |
+
return f"Philosophical Perspective: {random.choice(philosophical_perspectives)}"
|
102 |
+
|
103 |
+
class CopilotPerspective:
|
104 |
+
def __init__(self, config: Dict[str, Any]):
|
105 |
+
self.config = config
|
106 |
+
|
107 |
+
def generate_response(self, question: str) -> str:
|
108 |
+
copilot_responses = [
|
109 |
+
f"Let's outline the main components of '{question}' to address it effectively.",
|
110 |
+
f"Collaboratively brainstorm potential solutions for '{question}'.",
|
111 |
+
f"Systematically analyze '{question}' to identify key factors."
|
112 |
+
]
|
113 |
+
return f"Copilot Perspective: {random.choice(copilot_responses)}"
|
114 |
+
|
115 |
+
class BiasMitigationPerspective:
|
116 |
+
def __init__(self, config: Dict[str, Any]):
|
117 |
+
self.config = config
|
118 |
+
|
119 |
+
def generate_response(self, question: str) -> str:
|
120 |
+
bias_mitigation_responses = [
|
121 |
+
"Consider pre-processing methods to reduce bias in the training data.",
|
122 |
+
"Apply in-processing methods to mitigate bias during model training.",
|
123 |
+
"Use post-processing methods to adjust the model's outputs for fairness.",
|
124 |
+
"Evaluate the model using fairness metrics like demographic parity and equal opportunity.",
|
125 |
+
"Ensure compliance with legal frameworks such as GDPR and non-discrimination laws."
|
126 |
+
]
|
127 |
+
return f"Bias Mitigation Perspective: {random.choice(bias_mitigation_responses)}"
|
128 |
+
|
129 |
+
class PsychologicalPerspective:
|
130 |
+
def __init__(self, config: Dict[str, Any]):
|
131 |
+
self.config = config
|
132 |
+
|
133 |
+
def generate_response(self, question: str) -> str:
|
134 |
+
psychological_perspectives = [
|
135 |
+
f"Consider the psychological impact of '{question}'.",
|
136 |
+
f"Analyze '{question}' from a cognitive-behavioral perspective.",
|
137 |
+
f"Reflect on '{question}' through the lens of human psychology."
|
138 |
+
]
|
139 |
+
return f"Psychological Perspective: {random.choice(psychological_perspectives)}"
|