Spaces:
Runtime error
Runtime error
import asyncio | |
import logging | |
from typing import List, Dict | |
from cryptography.hazmat.primitives import hashes | |
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC | |
from cryptography.hazmat.primitives.asymmetric import rsa, padding | |
from cryptography.fernet import Fernet | |
# Simplified Element System | |
class Element: | |
DEFENSE_ACTIONS = { | |
"evasion": "evades threats through strategic ambiguity", | |
"adaptability": "adapts to counter emerging challenges", | |
"fortification": "strengthens defensive parameters" | |
} | |
def __init__(self, name: str, symbol: str, defense: str): | |
self.name = name | |
self.symbol = symbol | |
self.defense = defense | |
def defend(self): | |
return f"{self.name} ({self.symbol}): {self.DEFENSE_ACTIONS[self.defense]}" | |
# Core AI Perspectives | |
class AIPerspective: | |
PERSPECTIVES = { | |
"newton": lambda q: f"Newtonian Analysis: Force = {len(q)*0.73:.2f}N", | |
"davinci": lambda q: f"Creative Insight: {q[::-1]}", | |
"quantum": lambda q: f"Quantum View: {hash(q)%100}% certainty" | |
} | |
def __init__(self, active_perspectives: List[str] = None): | |
self.active = active_perspectives or list(self.PERSPECTIVES.keys()) | |
async def analyze(self, question: str) -> List[str]: | |
return [self.PERSPECTIVES[p](question) for p in self.active] | |
# Quantum-Resistant Encryption Upgrade | |
class QuantumSafeEncryptor: | |
def __init__(self): | |
self.private_key = rsa.generate_private_key(public_exponent=65537, key_size=4096) | |
self.public_key = self.private_key.public_key() | |
def hybrid_encrypt(self, data: str) -> bytes: | |
# Generate symmetric key | |
sym_key = Fernet.generate_key() | |
fernet = Fernet(sym_key) | |
# Encrypt data with symmetric encryption | |
encrypted_data = fernet.encrypt(data.encode()) | |
# Encrypt symmetric key with post-quantum algorithm | |
encrypted_key = self.public_key.encrypt( | |
sym_key, | |
padding.OAEP( | |
mgf=padding.MGF1(algorithm=hashes.SHA512()), | |
algorithm=hashes.SHA512(), | |
label=None | |
) | |
) | |
return encrypted_key + b'||SEPARATOR||' + encrypted_data | |
# Neural Architecture Search Integration | |
class AINeuralOptimizer: | |
def __init__(self): | |
self.search_model = None | |
async def optimize_pipeline(self, dataset): | |
from autokeras import StructuredDataClassifier | |
self.search_model = StructuredDataClassifier(max_trials=10) | |
self.search_model.fit(x=dataset.features, y=dataset.labels, epochs=50) | |
def generate_architecture(self): | |
import tensorflow as tf | |
best_model = self.search_model.export_model() | |
return tf.keras.models.clone_model(best_model) | |
# Holographic Knowledge Graph | |
class HolographicKnowledge: | |
def __init__(self, uri, user, password): | |
from neo4j import GraphDatabase | |
self.driver = GraphDatabase.driver(uri, auth=(user, password)) | |
async def store_relationship(self, entity1, relationship, entity2): | |
with self.driver.session() as session: | |
session.write_transaction( | |
self._create_relationship, entity1, relationship, entity2 | |
) | |
def _create_relationship(tx, e1, rel, e2): | |
query = ( | |
"MERGE (a:Entity {name: $e1}) " | |
"MERGE (b:Entity {name: $e2}) " | |
f"MERGE (a)-[r:{rel}]->(b)" | |
) | |
tx.run(query, e1=e1, e2=e2) | |
# Self-Healing Mechanism | |
class SelfHealingSystem: | |
def __init__(self): | |
from elasticsearch import Elasticsearch | |
import sentry_sdk | |
self.es = Elasticsearch() | |
sentry_sdk.init(dsn="YOUR_SENTRY_DSN") | |
async def monitor_system(self): | |
import psutil | |
while True: | |
health = await self.check_health() | |
if health['status'] != 'GREEN': | |
self.heal_system(health) | |
await asyncio.sleep(60) | |
async def check_health(self): | |
import psutil | |
return { | |
'memory': psutil.virtual_memory().percent, | |
'cpu': psutil.cpu_percent(), | |
'response_time': self._measure_response_time() | |
} | |
def heal_system(self, health): | |
if health['memory'] > 90: | |
self._clean_memory() | |
if health['response_time'] > 5000: | |
self._scale_out() | |
def _measure_response_time(self): | |
# Implement response time measurement | |
return 100 # Placeholder value | |
def _clean_memory(self): | |
# Implement memory cleaning | |
pass | |
def _scale_out(self): | |
# Implement scaling out | |
pass | |
# Temporal Analysis Engine | |
class TemporalProphet: | |
def __init__(self): | |
from prophet import Prophet | |
self.models = {} | |
async def analyze_temporal_patterns(self, data): | |
model = Prophet(interval_width=0.95) | |
model.fit(data) | |
future = model.make_future_dataframe(periods=365) | |
forecast = model.predict(future) | |
return forecast | |
def detect_anomalies(self, forecast): | |
return forecast[ | |
(forecast['yhat_lower'] > forecast['cap']) | | |
(forecast['yhat_upper'] < forecast['floor']) | |
] | |
# Unified System | |
class AISystem: | |
def __init__(self): | |
self.elements = [ | |
Element("Hydrogen", "H", "evasion"), | |
Element("Carbon", "C", "adaptability") | |
] | |
self.ai = AIPerspective() | |
self.security = QuantumSafeEncryptor() | |
self.self_healing = SelfHealingSystem() | |
self.temporal_analysis = TemporalProphet() | |
logging.basicConfig(level=logging.INFO) | |
async def process_query(self, question: str) -> Dict: | |
try: | |
# AI Analysis | |
perspectives = await self.ai.analyze(question) | |
# Element Defense | |
defenses = [e.defend() for e in self.elements | |
if e.name.lower() in question.lower()] | |
return { | |
"perspectives": perspectives, | |
"defenses": defenses, | |
"encrypted": self.security.hybrid_encrypt(question) | |
} | |
except Exception as e: | |
logging.error(f"Processing error: {e}") | |
return {"error": str(e)} | |
# Example Usage | |
async def main(): | |
system = AISystem() | |
response = await system.process_query("How does Hydrogen defend?") | |
print("AI Response:", response) | |
if __name__ == "__main__": | |
asyncio.run(main()) |