Raiff1982's picture
Create aicore.py
48213e4 verified
raw
history blame
6.5 kB
import asyncio
import logging
from typing import List, Dict
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
from cryptography.hazmat.primitives.asymmetric import rsa, padding
from cryptography.fernet import Fernet
# Simplified Element System
class Element:
DEFENSE_ACTIONS = {
"evasion": "evades threats through strategic ambiguity",
"adaptability": "adapts to counter emerging challenges",
"fortification": "strengthens defensive parameters"
}
def __init__(self, name: str, symbol: str, defense: str):
self.name = name
self.symbol = symbol
self.defense = defense
def defend(self):
return f"{self.name} ({self.symbol}): {self.DEFENSE_ACTIONS[self.defense]}"
# Core AI Perspectives
class AIPerspective:
PERSPECTIVES = {
"newton": lambda q: f"Newtonian Analysis: Force = {len(q)*0.73:.2f}N",
"davinci": lambda q: f"Creative Insight: {q[::-1]}",
"quantum": lambda q: f"Quantum View: {hash(q)%100}% certainty"
}
def __init__(self, active_perspectives: List[str] = None):
self.active = active_perspectives or list(self.PERSPECTIVES.keys())
async def analyze(self, question: str) -> List[str]:
return [self.PERSPECTIVES[p](question) for p in self.active]
# Quantum-Resistant Encryption Upgrade
class QuantumSafeEncryptor:
def __init__(self):
self.private_key = rsa.generate_private_key(public_exponent=65537, key_size=4096)
self.public_key = self.private_key.public_key()
def hybrid_encrypt(self, data: str) -> bytes:
# Generate symmetric key
sym_key = Fernet.generate_key()
fernet = Fernet(sym_key)
# Encrypt data with symmetric encryption
encrypted_data = fernet.encrypt(data.encode())
# Encrypt symmetric key with post-quantum algorithm
encrypted_key = self.public_key.encrypt(
sym_key,
padding.OAEP(
mgf=padding.MGF1(algorithm=hashes.SHA512()),
algorithm=hashes.SHA512(),
label=None
)
)
return encrypted_key + b'||SEPARATOR||' + encrypted_data
# Neural Architecture Search Integration
class AINeuralOptimizer:
def __init__(self):
self.search_model = None
async def optimize_pipeline(self, dataset):
from autokeras import StructuredDataClassifier
self.search_model = StructuredDataClassifier(max_trials=10)
self.search_model.fit(x=dataset.features, y=dataset.labels, epochs=50)
def generate_architecture(self):
import tensorflow as tf
best_model = self.search_model.export_model()
return tf.keras.models.clone_model(best_model)
# Holographic Knowledge Graph
class HolographicKnowledge:
def __init__(self, uri, user, password):
from neo4j import GraphDatabase
self.driver = GraphDatabase.driver(uri, auth=(user, password))
async def store_relationship(self, entity1, relationship, entity2):
with self.driver.session() as session:
session.write_transaction(
self._create_relationship, entity1, relationship, entity2
)
@staticmethod
def _create_relationship(tx, e1, rel, e2):
query = (
"MERGE (a:Entity {name: $e1}) "
"MERGE (b:Entity {name: $e2}) "
f"MERGE (a)-[r:{rel}]->(b)"
)
tx.run(query, e1=e1, e2=e2)
# Self-Healing Mechanism
class SelfHealingSystem:
def __init__(self):
from elasticsearch import Elasticsearch
import sentry_sdk
self.es = Elasticsearch()
sentry_sdk.init(dsn="YOUR_SENTRY_DSN")
async def monitor_system(self):
import psutil
while True:
health = await self.check_health()
if health['status'] != 'GREEN':
self.heal_system(health)
await asyncio.sleep(60)
async def check_health(self):
import psutil
return {
'memory': psutil.virtual_memory().percent,
'cpu': psutil.cpu_percent(),
'response_time': self._measure_response_time()
}
def heal_system(self, health):
if health['memory'] > 90:
self._clean_memory()
if health['response_time'] > 5000:
self._scale_out()
def _measure_response_time(self):
# Implement response time measurement
return 100 # Placeholder value
def _clean_memory(self):
# Implement memory cleaning
pass
def _scale_out(self):
# Implement scaling out
pass
# Temporal Analysis Engine
class TemporalProphet:
def __init__(self):
from prophet import Prophet
self.models = {}
async def analyze_temporal_patterns(self, data):
model = Prophet(interval_width=0.95)
model.fit(data)
future = model.make_future_dataframe(periods=365)
forecast = model.predict(future)
return forecast
def detect_anomalies(self, forecast):
return forecast[
(forecast['yhat_lower'] > forecast['cap']) |
(forecast['yhat_upper'] < forecast['floor'])
]
# Unified System
class AISystem:
def __init__(self):
self.elements = [
Element("Hydrogen", "H", "evasion"),
Element("Carbon", "C", "adaptability")
]
self.ai = AIPerspective()
self.security = QuantumSafeEncryptor()
self.self_healing = SelfHealingSystem()
self.temporal_analysis = TemporalProphet()
logging.basicConfig(level=logging.INFO)
async def process_query(self, question: str) -> Dict:
try:
# AI Analysis
perspectives = await self.ai.analyze(question)
# Element Defense
defenses = [e.defend() for e in self.elements
if e.name.lower() in question.lower()]
return {
"perspectives": perspectives,
"defenses": defenses,
"encrypted": self.security.hybrid_encrypt(question)
}
except Exception as e:
logging.error(f"Processing error: {e}")
return {"error": str(e)}
# Example Usage
async def main():
system = AISystem()
response = await system.process_query("How does Hydrogen defend?")
print("AI Response:", response)
if __name__ == "__main__":
asyncio.run(main())