google-bert-bert-base-uncased / fullreasoning.py
Raiff1982's picture
Upload 4 files
037fee9 verified
raw
history blame
14 kB
import asyncio
import json
import os
import logging
from typing import List, Dict, Any
from pydantic import BaseModel, ValidationError
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
# Ensure vaderSentiment is installed
try:
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
except ModuleNotFoundError:
import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", "vaderSentiment"])
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
# Ensure nltk is installed and download required data
try:
import nltk
from nltk.tokenize import word_tokenize
nltk.download('punkt', quiet=True)
except ImportError:
import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", "nltk"])
import nltk
from nltk.tokenize import word_tokenize
nltk.download('punkt', quiet=True)
# Import perspectives
from perspectives import (
NewtonPerspective, DaVinciPerspective, HumanIntuitionPerspective,
NeuralNetworkPerspective, QuantumComputingPerspective, ResilientKindnessPerspective,
MathematicalPerspective, PhilosophicalPerspective, CopilotPerspective, BiasMitigationPerspective
)
# Load environment variables
from dotenv import load_dotenv
load_dotenv()
azure_openai_api_key = os.getenv('AZURE_OPENAI_API_KEY')
azure_openai_endpoint = os.getenv('AZURE_OPENAI_ENDPOINT')
# Configuration management using pydantic
class Config(BaseModel):
real_time_data_sources: List[str]
sensitive_keywords: List[str]
# Initialize configuration
config = Config(
real_time_data_sources=["https://api.example.com/data"],
sensitive_keywords=["password", "ssn"]
)
# Memory management
memory = []
# Sentiment analysis
analyzer = SentimentIntensityAnalyzer()
# Dependency injection
class DependencyInjector:
def __init__(self):
self.dependencies = {}
def register(self, name, dependency):
self.dependencies[name] = dependency
def get(self, name):
return self.dependencies.get(name)
injector = DependencyInjector()
injector.register("config", config)
injector.register("analyzer", analyzer)
# Error handling and logging
logging.basicConfig(level=logging.INFO)
def handle_error(e):
logging.error(f"Error: {e}")
# Functions to implement
async def llm_should_continue() -> bool:
# Placeholder logic to determine if the goal is achieved
return False
async def llm_get_next_action() -> str:
# Placeholder logic to get the next action
return "next_action"
async def execute_action(action: str):
# Placeholder logic to execute an action
logging.info(f"Executing action: {action}")
async def goal_achieved() -> bool:
# Placeholder logic to check if the goal is achieved
return False
async def run():
while not await goal_achieved():
action = await llm_get_next_action()
await execute_action(action)
def process_command(command: str):
# Placeholder logic to process a command
logging.info(f"Processing command: {command}")
def analyze_sentiment(text: str) -> Dict[str, float]:
return analyzer.polarity_scores(text)
def classify_emotion(sentiment_score: Dict[str, float]) -> str:
# Placeholder logic to classify emotion based on sentiment scores
return "neutral"
def correlate_emotion_with_perspective(emotion: str) -> str:
# Placeholder logic to correlate emotion with perspectives
return "HumanIntuitionPerspective"
def handle_whitespace(text: str) -> str:
return text.strip()
def determine_next_action(memory: List[Dict[str, Any]]) -> str:
# Placeholder logic to determine the next action based on memory
return "next_action"
def generate_response(question: str) -> str:
# Placeholder logic to generate a response to a question
return "response"
async def fetch_real_time_data(source_url: str) -> Dict[str, Any]:
# Placeholder logic to fetch real-time data
return {"data": "real_time_data"}
def save_response(response: str):
# Placeholder logic to save the generated response
logging.info(f"Response saved: {response}")
def backup_response(response: str):
# Placeholder logic to backup the generated response
logging.info(f"Response backed up: {response}")
def handle_voice_input():
# Placeholder for handling voice input
pass
def handle_image_input(image_path: str):
# Placeholder for handling image input
pass
def handle_question(question: str):
# Placeholder logic to handle a question and apply functions
pass
def apply_function(function: str):
# Placeholder logic to apply a given function
pass
def analyze_element_interactions(element_name1: str, element_name2: str):
# Placeholder logic to analyze interactions between two elements
pass
# Setup Logging
def setup_logging(config):
if config.get('logging_enabled', True):
log_level = config.get('log_level', 'DEBUG').upper()
numeric_level = getattr(logging, log_level, logging.DEBUG)
logging.basicConfig(
filename='universal_reasoning.log',
level=numeric_level,
format='%(asctime)s - %(levelname)s - %(message)s'
)
else:
logging.disable(logging.CRITICAL)
# Load JSON configuration
def load_json_config(file_path):
if not os.path.exists(file_path):
logging.error(f"Configuration file '{file_path}' not found.")
return {}
try:
with open(file_path, 'r') as file:
config = json.load(file)
logging.info(f"Configuration loaded from '{file_path}'.")
return config
except json.JSONDecodeError as e:
logging.error(f"Error decoding JSON from the configuration file '{file_path}': {e}")
return {}
# Initialize NLP (basic tokenization)
def analyze_question(question):
tokens = word_tokenize(question)
logging.debug(f"Question tokens: {tokens}")
return tokens
# Define the Element class
class Element:
def __init__(self, name, symbol, representation, properties, interactions, defense_ability):
self.name = name
self.symbol = symbol
self.representation = representation
self.properties = properties
self.interactions = interactions
self.defense_ability = defense_ability
def execute_defense_function(self):
message = f"{self.name} ({self.symbol}) executes its defense ability: {self.defense_ability}"
logging.info(message)
return message
# Define the CustomRecognizer class
class CustomRecognizer:
def recognize(self, question):
# Simple keyword-based recognizer for demonstration purposes
if any(element_name.lower() in question.lower() for element_name in ["hydrogen", "diamond"]):
return RecognizerResult(question)
return RecognizerResult(None)
def get_top_intent(self, recognizer_result):
if recognizer_result.text:
return "ElementDefense"
else:
return "None"
class RecognizerResult:
def __init__(self, text):
self.text = text
# Universal Reasoning Aggregator
class UniversalReasoning:
def __init__(self, config):
self.config = config
self.perspectives = self.initialize_perspectives()
self.elements = self.initialize_elements()
self.recognizer = CustomRecognizer()
# Initialize the sentiment analyzer
self.sentiment_analyzer = SentimentIntensityAnalyzer()
def initialize_perspectives(self):
perspective_names = self.config.get('enabled_perspectives', [
"newton",
"davinci",
"human_intuition",
"neural_network",
"quantum_computing",
"resilient_kindness",
"mathematical",
"philosophical",
"copilot",
"bias_mitigation"
])
perspective_classes = {
"newton": NewtonPerspective,
"davinci": DaVinciPerspective,
"human_intuition": HumanIntuitionPerspective,
"neural_network": NeuralNetworkPerspective,
"quantum_computing": QuantumComputingPerspective,
"resilient_kindness": ResilientKindnessPerspective,
"mathematical": MathematicalPerspective,
"philosophical": PhilosophicalPerspective,
"copilot": CopilotPerspective,
"bias_mitigation": BiasMitigationPerspective
}
perspectives = []
for name in perspective_names:
cls = perspective_classes.get(name.lower())
if cls:
perspectives.append(cls(self.config))
logging.debug(f"Perspective '{name}' initialized.")
else:
logging.warning(f"Perspective '{name}' is not recognized and will be skipped.")
return perspectives
def initialize_elements(self):
elements = [
Element(
name="Hydrogen",
symbol="H",
representation="Lua",
properties=["Simple", "Lightweight", "Versatile"],
interactions=["Easily integrates with other languages and systems"],
defense_ability="Evasion"
),
# You can add more elements as needed
Element(
name="Diamond",
symbol="D",
representation="Kotlin",
properties=["Modern", "Concise", "Safe"],
interactions=["Used for Android development"],
defense_ability="Adaptability"
)
]
return elements
async def generate_response(self, question):
responses = []
tasks = []
# Generate responses from perspectives concurrently
for perspective in self.perspectives:
if asyncio.iscoroutinefunction(perspective.generate_response):
tasks.append(perspective.generate_response(question))
else:
# Wrap synchronous functions in coroutine
async def sync_wrapper(perspective, question):
return perspective.generate_response(question)
tasks.append(sync_wrapper(perspective, question))
perspective_results = await asyncio.gather(*tasks, return_exceptions=True)
for perspective, result in zip(self.perspectives, perspective_results):
if isinstance(result, Exception):
logging.error(f"Error generating response from {perspective.__class__.__name__}: {result}")
else:
responses.append(result)
logging.debug(f"Response from {perspective.__class__.__name__}: {result}")
# Handle element defense logic
recognizer_result = self.recognizer.recognize(question)
top_intent = self.recognizer.get_top_intent(recognizer_result)
if top_intent == "ElementDefense":
element_name = recognizer_result.text.strip()
element = next(
(el for el in self.elements if el.name.lower() in element_name.lower()),
None
)
if element:
defense_message = element.execute_defense_function()
responses.append(defense_message)
else:
logging.info(f"No matching element found for '{element_name}'")
ethical_considerations = self.config.get(
'ethical_considerations',
"Always act with transparency, fairness, and respect for privacy."
)
responses.append(f"**Ethical Considerations:**\n{ethical_considerations}")
formatted_response = "\n\n".join(responses)
return formatted_response
def save_response(self, response):
if self.config.get('enable_response_saving', False):
save_path = self.config.get('response_save_path', 'responses.txt')
try:
with open(save_path, 'a', encoding='utf-8') as file:
file.write(response + '\n')
logging.info(f"Response saved to '{save_path}'.")
except Exception as e:
logging.error(f"Error saving response to '{save_path}': {e}")
def backup_response(self, response):
if self.config.get('backup_responses', {}).get('enabled', False):
backup_path = self.config['backup_responses'].get('backup_path', 'backup_responses.txt')
try:
with open(backup_path, 'a', encoding='utf-8') as file:
file.write(response + '\n')
logging.info(f"Response backed up to '{backup_path}'.")
except Exception as e:
logging.error(f"Error backing up response to '{backup_path}': {e}")
# Example usage
if __name__ == "__main__":
try:
config = load_json_config('config.json')
# Add Azure OpenAI configurations to the config
config['azure_openai_api_key'] = azure_openai_api_key
config['azure_openai_endpoint'] = azure_openai_endpoint
setup_logging(config)
universal_reasoning = UniversalReasoning(config)
question = "Tell me about Hydrogen and its defense mechanisms."
response = asyncio.run(universal_reasoning.generate_response(question))
print(response)
if response:
universal_reasoning.save_response(response)
universal_reasoning.backup_response(response)
except ValidationError as e:
handle_error(e)