Spaces:
Runtime error
Runtime error
import asyncio | |
import json | |
import os | |
import logging | |
from typing import List, Dict, Any | |
from pydantic import BaseModel, ValidationError | |
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer | |
# Ensure vaderSentiment is installed | |
try: | |
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer | |
except ModuleNotFoundError: | |
import subprocess | |
import sys | |
subprocess.check_call([sys.executable, "-m", "pip", "install", "vaderSentiment"]) | |
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer | |
# Ensure nltk is installed and download required data | |
try: | |
import nltk | |
from nltk.tokenize import word_tokenize | |
nltk.download('punkt', quiet=True) | |
except ImportError: | |
import subprocess | |
import sys | |
subprocess.check_call([sys.executable, "-m", "pip", "install", "nltk"]) | |
import nltk | |
from nltk.tokenize import word_tokenize | |
nltk.download('punkt', quiet=True) | |
# Import perspectives | |
from perspectives import ( | |
NewtonPerspective, DaVinciPerspective, HumanIntuitionPerspective, | |
NeuralNetworkPerspective, QuantumComputingPerspective, ResilientKindnessPerspective, | |
MathematicalPerspective, PhilosophicalPerspective, CopilotPerspective, BiasMitigationPerspective | |
) | |
# Load environment variables | |
from dotenv import load_dotenv | |
load_dotenv() | |
azure_openai_api_key = os.getenv('AZURE_OPENAI_API_KEY') | |
azure_openai_endpoint = os.getenv('AZURE_OPENAI_ENDPOINT') | |
# Configuration management using pydantic | |
class Config(BaseModel): | |
real_time_data_sources: List[str] | |
sensitive_keywords: List[str] | |
# Initialize configuration | |
config = Config( | |
real_time_data_sources=["https://api.example.com/data"], | |
sensitive_keywords=["password", "ssn"] | |
) | |
# Memory management | |
memory = [] | |
# Sentiment analysis | |
analyzer = SentimentIntensityAnalyzer() | |
# Dependency injection | |
class DependencyInjector: | |
def __init__(self): | |
self.dependencies = {} | |
def register(self, name, dependency): | |
self.dependencies[name] = dependency | |
def get(self, name): | |
return self.dependencies.get(name) | |
injector = DependencyInjector() | |
injector.register("config", config) | |
injector.register("analyzer", analyzer) | |
# Error handling and logging | |
logging.basicConfig(level=logging.INFO) | |
def handle_error(e): | |
logging.error(f"Error: {e}") | |
# Functions to implement | |
async def llm_should_continue() -> bool: | |
# Placeholder logic to determine if the goal is achieved | |
return False | |
async def llm_get_next_action() -> str: | |
# Placeholder logic to get the next action | |
return "next_action" | |
async def execute_action(action: str): | |
# Placeholder logic to execute an action | |
logging.info(f"Executing action: {action}") | |
async def goal_achieved() -> bool: | |
# Placeholder logic to check if the goal is achieved | |
return False | |
async def run(): | |
while not await goal_achieved(): | |
action = await llm_get_next_action() | |
await execute_action(action) | |
def process_command(command: str): | |
# Placeholder logic to process a command | |
logging.info(f"Processing command: {command}") | |
def analyze_sentiment(text: str) -> Dict[str, float]: | |
return analyzer.polarity_scores(text) | |
def classify_emotion(sentiment_score: Dict[str, float]) -> str: | |
# Placeholder logic to classify emotion based on sentiment scores | |
return "neutral" | |
def correlate_emotion_with_perspective(emotion: str) -> str: | |
# Placeholder logic to correlate emotion with perspectives | |
return "HumanIntuitionPerspective" | |
def handle_whitespace(text: str) -> str: | |
return text.strip() | |
def determine_next_action(memory: List[Dict[str, Any]]) -> str: | |
# Placeholder logic to determine the next action based on memory | |
return "next_action" | |
def generate_response(question: str) -> str: | |
# Placeholder logic to generate a response to a question | |
return "response" | |
async def fetch_real_time_data(source_url: str) -> Dict[str, Any]: | |
# Placeholder logic to fetch real-time data | |
return {"data": "real_time_data"} | |
def save_response(response: str): | |
# Placeholder logic to save the generated response | |
logging.info(f"Response saved: {response}") | |
def backup_response(response: str): | |
# Placeholder logic to backup the generated response | |
logging.info(f"Response backed up: {response}") | |
def handle_voice_input(): | |
# Placeholder for handling voice input | |
pass | |
def handle_image_input(image_path: str): | |
# Placeholder for handling image input | |
pass | |
def handle_question(question: str): | |
# Placeholder logic to handle a question and apply functions | |
pass | |
def apply_function(function: str): | |
# Placeholder logic to apply a given function | |
pass | |
def analyze_element_interactions(element_name1: str, element_name2: str): | |
# Placeholder logic to analyze interactions between two elements | |
pass | |
# Setup Logging | |
def setup_logging(config): | |
if config.get('logging_enabled', True): | |
log_level = config.get('log_level', 'DEBUG').upper() | |
numeric_level = getattr(logging, log_level, logging.DEBUG) | |
logging.basicConfig( | |
filename='universal_reasoning.log', | |
level=numeric_level, | |
format='%(asctime)s - %(levelname)s - %(message)s' | |
) | |
else: | |
logging.disable(logging.CRITICAL) | |
# Load JSON configuration | |
def load_json_config(file_path): | |
if not os.path.exists(file_path): | |
logging.error(f"Configuration file '{file_path}' not found.") | |
return {} | |
try: | |
with open(file_path, 'r') as file: | |
config = json.load(file) | |
logging.info(f"Configuration loaded from '{file_path}'.") | |
return config | |
except json.JSONDecodeError as e: | |
logging.error(f"Error decoding JSON from the configuration file '{file_path}': {e}") | |
return {} | |
# Initialize NLP (basic tokenization) | |
def analyze_question(question): | |
tokens = word_tokenize(question) | |
logging.debug(f"Question tokens: {tokens}") | |
return tokens | |
# Define the Element class | |
class Element: | |
def __init__(self, name, symbol, representation, properties, interactions, defense_ability): | |
self.name = name | |
self.symbol = symbol | |
self.representation = representation | |
self.properties = properties | |
self.interactions = interactions | |
self.defense_ability = defense_ability | |
def execute_defense_function(self): | |
message = f"{self.name} ({self.symbol}) executes its defense ability: {self.defense_ability}" | |
logging.info(message) | |
return message | |
# Define the CustomRecognizer class | |
class CustomRecognizer: | |
def recognize(self, question): | |
# Simple keyword-based recognizer for demonstration purposes | |
if any(element_name.lower() in question.lower() for element_name in ["hydrogen", "diamond"]): | |
return RecognizerResult(question) | |
return RecognizerResult(None) | |
def get_top_intent(self, recognizer_result): | |
if recognizer_result.text: | |
return "ElementDefense" | |
else: | |
return "None" | |
class RecognizerResult: | |
def __init__(self, text): | |
self.text = text | |
# Universal Reasoning Aggregator | |
class UniversalReasoning: | |
def __init__(self, config): | |
self.config = config | |
self.perspectives = self.initialize_perspectives() | |
self.elements = self.initialize_elements() | |
self.recognizer = CustomRecognizer() | |
# Initialize the sentiment analyzer | |
self.sentiment_analyzer = SentimentIntensityAnalyzer() | |
def initialize_perspectives(self): | |
perspective_names = self.config.get('enabled_perspectives', [ | |
"newton", | |
"davinci", | |
"human_intuition", | |
"neural_network", | |
"quantum_computing", | |
"resilient_kindness", | |
"mathematical", | |
"philosophical", | |
"copilot", | |
"bias_mitigation" | |
]) | |
perspective_classes = { | |
"newton": NewtonPerspective, | |
"davinci": DaVinciPerspective, | |
"human_intuition": HumanIntuitionPerspective, | |
"neural_network": NeuralNetworkPerspective, | |
"quantum_computing": QuantumComputingPerspective, | |
"resilient_kindness": ResilientKindnessPerspective, | |
"mathematical": MathematicalPerspective, | |
"philosophical": PhilosophicalPerspective, | |
"copilot": CopilotPerspective, | |
"bias_mitigation": BiasMitigationPerspective | |
} | |
perspectives = [] | |
for name in perspective_names: | |
cls = perspective_classes.get(name.lower()) | |
if cls: | |
perspectives.append(cls(self.config)) | |
logging.debug(f"Perspective '{name}' initialized.") | |
else: | |
logging.warning(f"Perspective '{name}' is not recognized and will be skipped.") | |
return perspectives | |
def initialize_elements(self): | |
elements = [ | |
Element( | |
name="Hydrogen", | |
symbol="H", | |
representation="Lua", | |
properties=["Simple", "Lightweight", "Versatile"], | |
interactions=["Easily integrates with other languages and systems"], | |
defense_ability="Evasion" | |
), | |
# You can add more elements as needed | |
Element( | |
name="Diamond", | |
symbol="D", | |
representation="Kotlin", | |
properties=["Modern", "Concise", "Safe"], | |
interactions=["Used for Android development"], | |
defense_ability="Adaptability" | |
) | |
] | |
return elements | |
async def generate_response(self, question): | |
responses = [] | |
tasks = [] | |
# Generate responses from perspectives concurrently | |
for perspective in self.perspectives: | |
if asyncio.iscoroutinefunction(perspective.generate_response): | |
tasks.append(perspective.generate_response(question)) | |
else: | |
# Wrap synchronous functions in coroutine | |
async def sync_wrapper(perspective, question): | |
return perspective.generate_response(question) | |
tasks.append(sync_wrapper(perspective, question)) | |
perspective_results = await asyncio.gather(*tasks, return_exceptions=True) | |
for perspective, result in zip(self.perspectives, perspective_results): | |
if isinstance(result, Exception): | |
logging.error(f"Error generating response from {perspective.__class__.__name__}: {result}") | |
else: | |
responses.append(result) | |
logging.debug(f"Response from {perspective.__class__.__name__}: {result}") | |
# Handle element defense logic | |
recognizer_result = self.recognizer.recognize(question) | |
top_intent = self.recognizer.get_top_intent(recognizer_result) | |
if top_intent == "ElementDefense": | |
element_name = recognizer_result.text.strip() | |
element = next( | |
(el for el in self.elements if el.name.lower() in element_name.lower()), | |
None | |
) | |
if element: | |
defense_message = element.execute_defense_function() | |
responses.append(defense_message) | |
else: | |
logging.info(f"No matching element found for '{element_name}'") | |
ethical_considerations = self.config.get( | |
'ethical_considerations', | |
"Always act with transparency, fairness, and respect for privacy." | |
) | |
responses.append(f"**Ethical Considerations:**\n{ethical_considerations}") | |
formatted_response = "\n\n".join(responses) | |
return formatted_response | |
def save_response(self, response): | |
if self.config.get('enable_response_saving', False): | |
save_path = self.config.get('response_save_path', 'responses.txt') | |
try: | |
with open(save_path, 'a', encoding='utf-8') as file: | |
file.write(response + '\n') | |
logging.info(f"Response saved to '{save_path}'.") | |
except Exception as e: | |
logging.error(f"Error saving response to '{save_path}': {e}") | |
def backup_response(self, response): | |
if self.config.get('backup_responses', {}).get('enabled', False): | |
backup_path = self.config['backup_responses'].get('backup_path', 'backup_responses.txt') | |
try: | |
with open(backup_path, 'a', encoding='utf-8') as file: | |
file.write(response + '\n') | |
logging.info(f"Response backed up to '{backup_path}'.") | |
except Exception as e: | |
logging.error(f"Error backing up response to '{backup_path}': {e}") | |
# Example usage | |
if __name__ == "__main__": | |
try: | |
config = load_json_config('config.json') | |
# Add Azure OpenAI configurations to the config | |
config['azure_openai_api_key'] = azure_openai_api_key | |
config['azure_openai_endpoint'] = azure_openai_endpoint | |
setup_logging(config) | |
universal_reasoning = UniversalReasoning(config) | |
question = "Tell me about Hydrogen and its defense mechanisms." | |
response = asyncio.run(universal_reasoning.generate_response(question)) | |
print(response) | |
if response: | |
universal_reasoning.save_response(response) | |
universal_reasoning.backup_response(response) | |
except ValidationError as e: | |
handle_error(e) |